5 resultados para HARDENING

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches.

A fundamental question that motivates the modeling of foams is ‘how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?’ A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,“Analysis of Uniaxial Compression of Vertically Aligned Carbon Nanotubes,” J. Mech.Phys. Solids, 59, pp. 2227–2237, Erratum 60, 1753–1756 (2012)], the property space exploration was advanced to three types of simple mechanical tests: 1) uniaxial compression, 2) uniaxial tension, and 3) nanoindentation with a conical and a flat-punch tip. The simulations attempt to explain some of the salient features in experimental data, like
1) The initial linear elastic response.
2) One or more nonlinear instabilities, yielding, and hardening.

The model-inherent relationships between the material properties and the overall stress-strain behavior were validated against the available experimental data. The material properties include the gradient in stiffness along the height, plastic and elastic compressibility, and hardening. Each of these tests was evaluated in terms of their efficiency in extracting material properties. The uniaxial simulation results proved to be a combination of structural and material influences. Out of all deformation paths, flat-punch indentation proved to be superior since it is the most sensitive in capturing the material properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents a technique for obtaining the stochastic response of a nonlinear continuous system. First, the general method of nonstationary continuous equivalent linearization is developed. This technique allows replacement of the original nonlinear system with a time-varying linear continuous system. Next, a numerical implementation is described which allows solution of complex problems on a digital computer. In this procedure, the linear replacement system is discretized by the finite element method. Application of this method to systems satisfying the one-dimensional wave equation with two different types of constitutive nonlinearities is described. Results are discussed for nonlinear stress-strain laws of both hardening and softening types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is concerned with the derivation of optimal scaling laws, in the sense of matching lower and upper bounds on the energy, for a solid undergoing ductile fracture. The specific problem considered concerns a material sample in the form of an infinite slab of finite thickness subjected to prescribed opening displacements on its two surfaces. The solid is assumed to obey deformation-theory of plasticity and, in order to further simplify the analysis, we assume isotropic rigid-plastic deformations with zero plastic spin. When hardening exponents are given values consistent with observation, the energy is found to exhibit sublinear growth. We regularize the energy through the addition of nonlocal energy terms of the strain-gradient plasticity type. This nonlocal regularization has the effect of introducing an intrinsic length scale into the energy. We also put forth a physical argument that identifies the intrinsic length and suggests a linear growth of the nonlocal energy. Under these assumptions, ductile fracture emerges as the net result of two competing effects: whereas the sublinear growth of the local energy promotes localization of deformation to failure planes, the nonlocal regularization stabilizes this process, thus resulting in an orderly progression towards failure and a well-defined specific fracture energy. The optimal scaling laws derived here show that ductile fracture results from localization of deformations to void sheets, and that it requires a well-defined energy per unit fracture area. In particular, fractal modes of fracture are ruled out under the assumptions of the analysis. The optimal scaling laws additionally show that ductile fracture is cohesive in nature, i.e., it obeys a well-defined relation between tractions and opening displacements. Finally, the scaling laws supply a link between micromechanical properties and macroscopic fracture properties. In particular, they reveal the relative roles that surface energy and microplasticity play as contributors to the specific fracture energy of the material. Next, we present an experimental assessment of the optimal scaling laws. We show that when the specific fracture energy is renormalized in a manner suggested by the optimal scaling laws, the data falls within the bounds predicted by the analysis and, moreover, they ostensibly collapse---with allowances made for experimental scatter---on a master curve dependent on the hardening exponent, but otherwise material independent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is concerned with the dynamic response of a General multidegree-of-freedom linear system with a one dimensional nonlinear constraint attached between two points. The nonlinear constraint is assumed to consist of rate-independent conservative and hysteretic nonlinearities and may contain a viscous dissipation element. The dynamic equations for general spatial and temporal load distributions are derived for both continuous and discrete systems. The method of equivalent linearization is used to develop equations which govern the approximate steady-state response to generally distributed loads with harmonic time dependence.

The qualitative response behavior of a class of undamped chainlike structures with a nonlinear terminal constraint is investigated. It is shown that the hardening or softening behavior of every resonance curve is similar and is determined by the properties of the constraint. Also examined are the number and location of resonance curves, the boundedness of the forced response, the loci of response extrema, and other characteristics of the response. Particular consideration is given to the dependence of the response characteristics on the properties of the linear system, the nonlinear constraint, and the load distribution.

Numerical examples of the approximate steady-state response of three structural systems are presented. These examples illustrate the application of the formulation and qualitative theory. It is shown that disconnected response curves and response curves which cross are obtained for base excitation of a uniform shear beam with a cubic spring foundation. Disconnected response curves are also obtained for the steady-state response to a concentrated load of a chainlike structure with a hardening hysteretic constraint. The accuracy of the approximate response curves is investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part I

Phenol oxidase is the enzyme responsible for hardening and pigmentation of the insect cuticle. In Drosophila, phenol oxidase is a latent enzyme. Enzyme activity is produced by the interaction of a number of protein components. A minimal activation scheme consisting of six protein components, designated Pre S, S activator, S, P. P' and Ʌ1 is described. Quantitative assays have been developed for the S activator, S, P and P' proteins and these components have been partially purified. Experiments describing the interactions of the six components have been conducted and a model for the activation of phenol oxidase in a minimal system is proposed. Possible mechanisms of the reactions between the constituents of the activating system and potential regulatory mechanisms involved in phenol oxidase production and function are discussed.

Part II

A method has been developed for the partial purification of insulin from human serum. A procedure for the determination of the electrophoretic mobility of serum insulin on polyacrylamide gels is described. An electrophoretic analysis of insulin isolated from a normal subject is reported and in addition to a major band, the existence of a number of minor bands of immunoreactive insulin is described. A comparison of the electrophoretic patterns of insulin isolated from normal and diabetic subjects was carried out and indications that differences between them may occur are reported.