948 resultados para H2O2 oxidant
Resumo:
Here we present oxygen-nonstoichiometric transition metal oxides as highly prominent candidates to catalyze the industrially important oxidation reactions of hydrocarbons when hydrogen peroxide is employed as an environmentally benign oxidant. The proof-of-concept data are revealed for the complex cobalt oxide, YBaCo4O7+δ (0 < δ < 1.5), in the oxidation process of cyclohexene. In the 2-h reaction experiments YBaCo4O7+δ was found to be significantly more active (>60 % conversion) than the commercial TiO2 catalyst (<20 %) even though its surface area was less than one tenth of that of TiO2. In the 7-h experiments with YBaCo4O7+δ, 100 % conversion of cyclohexene was achieved. Immersion calorimetry measurements showed that the high catalytic activity may be ascribed to the exceptional ability of YBaCo4O7+δ to dissociate H2O2 and release active oxygen to the oxidation reaction.
Resumo:
A bimetallic oxidation catalyst has been synthesized via wet impregnation of copper and iron over a mesoporous SBA-15 silica support. Physicochemical properties of the resulting material were characterized by XRD, N2 physisorption, DRUVS, FTIR, Raman, SEM and HRTEM, revealing the structural integrity of the parent SBA-15, and presence of highly dispersed Cu and Fe species present as CuO and Fe2O3. The CuFe/SBA-15 bimetallic catalyst was subsequently utilized for the oxidative degradation of N,N-diethyl-p-phenyl diamine (DPD) employing a H2O2 oxidant in aqueous solution.
Resumo:
oxovanadium(V) salicylhydroximate complexes, [VO(SHA)(H2O)]center dot 1.58H(2)O (1) and [V3O3(CSHA)(3) (H2O)(3)]center dot 3CH(3)COCH(3) (2) have been synthesized by reaction of VO43- with N-salicyl hydroxamic acid (SHAHS) and N-(5-chlorosalicyl) hydroxamic acid (CSHAH(3)), respectively, in methanol medium. Compound 1 on reaction with pyridine 2,6-dicarboxylic acid (PyDCH2) yields mononuclear complex [VO(SHAH(2))(PyDC)] (3). Treatment of compound 3 with hydrogen peroxide at low pH (2-3) and low temperature (0-5 degrees C) yields a stable oxoperoxovanadium(V) complex H[VO(O-2)(PyDC)(H2O)]center dot 2.5H(2)O (4). All four complexes (1-4) have been characterized by spectroscopic (IR, UV-Vis, V-51 NMR) and single crystal X-ray analyses. Intermolecular hydrogen bonds link complex 1 into hexanuclear clusters consisting of six {VNO5} octahedra surrounded by twelve {VNO5} octahedra to form an annular ring. While the molecular packing in 2 generates a two-dimensional framework hydrogen bonds involving the solvent acetone molecules, the mononuclear complexes 3 and 4 exhibit three-dimensional supramolecular architecture. The compounds 1 and 2 behave as good catalysts for oxygenation of benzylic, aromatic, carbocyclic and aliphatic hydrocarbons to their corresponding hydroxylated and oxygenated products using H2O2 as terminal oxidant; the process affords very good yield and turnover number. The catalysis work shows that cyclohexane is a very easily oxidizable substrate giving the highest turnover number (TON) while n-hexane and n-heptane show limited yield, longer time involvement and lesser TON than other hydrocarbons. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Objective - We hypothesized that reactive oxygen species ( ROS) contribute to progression of aortic valve ( AV) calcification/ stenosis. Methods and Results - We investigated ROS production and effects of antioxidants tempol and lipoic acid ( LA) in calcification progression in rabbits given 0.5% cholesterol diet +10(4) IU/d Vit.D-2 for 12 weeks. Superoxide and H2O2 microfluorotopography and 3-nitrotyrosine immunoreactivity showed increased signals not only in macrophages but preferentially around calcifying foci, in cells expressing osteoblast/ osteoclast, but not macrophage markers. Such cells also showed increased expression of NAD(P) H oxidase subunits Nox2, p22phox, and protein disulfide isomerase. Nox4, but not Nox1 mRNA, was increased. Tempol augmented whereas LA decreased H2O2 signals. Importantly, AV calcification, assessed by echocardiography and histomorphometry, decreased 43% to 70% with LA, but increased with tempol (P <= 0.05). Tempol further enhanced apoptosis and Nox4 expression. In human sclerotic or stenotic AV, we found analogous increases in ROS production and NAD(P) H oxidase expression around calcifying foci. An in vitro vascular smooth muscle cell (VSMC) calcification model also exhibited increased, catalase-inhibitable, calcium deposit with tempol, but not with LA. Conclusions - Our data provide evidence that ROS, particularly hydrogen peroxide, potentiate AV calcification progression. However, tempol exhibited a paradoxical effect, exacerbating AV/vascular calcification, likely because of its induced increase in peroxide generation.
Resumo:
SUMMARYAim: The embryonic/fetal heart is highly sensitive to oxygenation level and a transient uteroplacental hypoperfusion can lead to oxyradicals overproduction. Information about the molecular mechanisms underlying ischemia-reperfusion (I-R) injury in the developing heart is lacking. The Janus Kinase 2 / Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) pathway, required for cardiogenesis and involved in protection of the adult heart against I-R, could also play a key role in the response of the fetal myocardium to transient oxygen deprivation. The aim of the study was to characterize the involvement of JAK2/STAT3 pathway and its interaction with other signalling pathways in the developing heart transiently submitted to anoxia. Furthermore, the response of the embryonic heart to an exogenous oxidant stress (H2O2) in comparison to reoxygenation-induced endogenous oxyradicals has been investigated.Methods: Hearts isolated from 4-day-old chick embryos were submitted to anoxia (30min) and reoxygenation (80min) with or without the antioxidant MPG, the JAK2/STAT3 inhibitor AG490 or exposed to H202 (50|iM-lmM). The time course of phosphorylation of STAT3atyr0Sine7 and Reperfusion Injury Salvage Kinase (RISK) proteins (PI3K, Akt, GSK3B, Glycogen Synthase and ERK2) was determined in homogenate" and in enriched nuclear and cytoplasmic fractions. The STAT3 DNA-binding was determined by EMSA and the expression of STAT3 specific target genes by RT-PCR. The chrono-, dromo- and inotropic disturbances were also investigated by ECG and mechanical recordings.Results: Phosphorylation of STATSaP (P-Tyr STAT3a) was increased by reoxygenation and reduced by MPG or AG490. STAT3 and GSK36 were detected both in nuclear and cytoplasmic fractions while PI3K, Akt, GS and ERK2 were restricted to cytoplasm. Reoxygenation led to nuclear accumulation of STAT3 but unexpectedly without DNA- binding. AG490 decreased the reoxygenation-induced phosphorylation of STABa^, Akt, GS and ERK2 and phosphorylation/inhibition of GSK3B in the nucleus, exclusively. Inhibition of JAK2/STAT3 delayed recovery of atrial rate, worsened RR. variability and prolonged arrhythmias compared to control hearts. Cardiac activity was altered only at concentrations >500μΜ of H2O2. Moreover, ImM of H2O2 suppressed atrial activity in 45% of the hearts, atrioventricular conduction in 66% and augmented P-Tyr STAT3awhich led to an increase in the DNA-binding but no change in the expression of three STAT3 specific target genes (iNOS, MnSOD, Cox-2).Conclusion: In the developing heart, besides its nuclear translocation without transcriptional activity, ROS-activated STAT3a can rapidly interact with RISK proteins present in nucleus and cytoplasm and reduce the anoxia-reoxygenation-induced arrhythmias. Moreover, the embryonic heart is highly resistant to H2O2 and the atrial region is the less affected. The role of JAK2/STAT3 in the response to reoxygenation-induced oxyradicals is different from the response to strong exogenous oxidant stress where STAT3 DNA-binding activity is increased. Such findings provide a first step in understanding the modulation of signalling cascades in the fetal heart submitted to transient intrauterine oxygen deprivation.RESUMEIntroduction: Le coeur embryonnaire et foetal est très sensible au manque d'oxygène et une hypoperfusion utéroplacentaire transitoire peut conduire à une surproduction d'espèces radicalaires (ROS). Dans le coeur en développement les mécanismes moléculaires impliqués en situation d'ischémie-reperfusion (I-R) ne sont pas connus. La voie de signalisation JAK2/STAT3 (Janus Kinase 2 / Signal Transducer and Activator of Transcription 3), impliquée aussi bien dans la cardiogenèse précoce que dans la protection du coeur adulte contre l'I-R, pourrait jouer un rôle clé dans la réponse du myocarde foetal à un déficit en oxygène. Cette étude a permis d'étudier le rôle de la voie JAK2/STAT3 et son interaction avec d'autres voies de signalisation dans un modèle de coeur embryonnaire soumis à un épisode anoxique. En outre, les effets du stress oxydant endogène provoqué par la réoxygénation ont été comparés à ceux du stress oxydatif exogène induit par du peroxyde d'hydrogène (H2O2).Méthodes: Des coeurs isolés d'embryons de poulet âgés de 4 jours ont été soumis à une anoxie (30min) suivie d'une réoxygénation (80min) en présence ou non de l'antioxydant MPG et de l'inhibiteur de JAK2/STAT3 AG490 ou exposés à de 1Ή202 (50μΜ-1πιΜ). L'évolution temporelle de la phosphorylation de 8ΤΑΤ3α*ΓΟδίη6705 (P-Tyr STAT3a) et celle de la phosphorylation des protéines de la voie RISK (Reperfusion Injury Salvage Kinase: PI3K, Akt, GSK3B, glycogène synthase GS et ERK2) ont été déterminés dans l'homogénat et dans les fractions nucléaire et cytopiasmique du myocarde. La liaison de STAT3 à l'ADN a été déterminée par EMSA et l'expression de gènes cibles de STAT3 (iNOS, MnSOD, Cox2) par RT-PCR. Les effets chrono-, dromo- et inotropes ont été déterminés par les enregistrements de l'ECG et de l'activité contractile ventriculaire.Résultats: STAT3 et GSK3B étaient présents dans les fractions nucléaire et cytopiasmique tandis que PI3K, Akt, GS et ERK2 n'étaient détectées que dans la fraction cytopiasmique. L'augmentation de P-Tyr STAT3a provoquée par la réoxygénation était significativement réduite par le MPG ou PAG490. La réoxygénation entraînait l'accumulation nucléaire de STAT3, mais étonnamment sans liaison avec l'ADN. A la réoxygénation TAG490 diminuait la phosphorylation d'Akt, GS et ERK2 ainsi que celle de GSK36 mais exclusivement dans la fraction nucléaire. L'inhibition de JAK2/STAT3 retardait également la récupération du rythme cardiaque et prolongeait la durée des arythmies. L'activité cardiaque n'était perturbée par de ΓΗ2Ο2 qu'à des concentrations >500μΜ. A ImM, ΓΗ2Ο2 supprimait l'activité auriculaire dans 45% des coeurs et la conduction auriculo-ventriculaire dans 66% et augmentait la formation de P-Tyr STAT3a et sa liaison à l'ADN sans modifier l'expression des gènes cibles.Conclusion: Les ROS produits par l'anoxie-réoxygénation activent STAT3a qui subit une translocation dans le noyau sans se lier à l'ADN et interagit rapidement avec des protéines de la voie RISK dans les compartiments nucléaire et cytopiasmique du coeur embryonnaire. Ce dernier, en particulier au niveau des oreillettes, se révèle très résistant au puissant stress oxydatif de l'H202 qui se différencie du stress lié à la réoxygénation en favorisant la liaison de STAT3 à l'ADN. Ces résultats originaux permettent une meilleure compréhension des mécanismes qui peuvent améliorer la récupération du coeur en développement après un épisode hypoxique intra-utérin.
Resumo:
In this work synthetic niobia was used to promote the oxidation of methylene blue dye in aqueous medium. The niobia was characterized by N2 adsorption/desorption, XRD and TG measurements. The presence of reactive species on the niobia surface strongly increased the oxidation rate of the methylene blue dye. The reaction mechanism was studied by ESI-MS suggesting that the oxidation of the organic dye involve oxidizing species generated mainly after previous treatment with H2O2. It can be observed that the catalyst is a good material in the activation of gas (atmospheric oxygen) or liquid (hydrogen peroxide) oxidant agent with a total discoloration of the dye solution after only 1 h of reaction.
Resumo:
Two oxorhenium(V) complexes with bidentate phosphine ligands were synthesized and isolated as [ReOCl3(dppm)] 1 and [ReOCl3(dppp)] 2 [where dppm = 1,1-bis(diphenylphosphino) methane and dppp = 1.3-bis(diphenylphosphino) propanel. Complex 2 was structurally characterized. Both the complexes were used as catalysts in the epoxidation of olefins using NaHCO3 as co-catalyst and H2O2 as terminal oxidant. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
At sites of chronic inflammation, such as in the inflamed rheumatoid joint, activated neutrophils release hydrogen peroxide (H2O2) and the enzyme myeloperoxidase to catalyse the formation of hypochlorous acid (HOCl). 3-chlorotyrosine, a marker of HOCl in vivo, has been observed in synovial fluid proteins from rheumatoid arthritis patients. However the mechanisms of HOCl-induced cytotxicity are unknown. We determined the molecular mechanisms by which HOCl induced cell death in human mesenchymal progenitor cells (MPCs) differentiated into a chondrocytic phenotype as a model of human cartilage cells and show that HOCl induced rapid Bax conformational change, mitochondrial permeability and release of intra-mitochondrial pro-apoptotic proteins which resulted in nuclear translocation of AIF and EndoG. siRNA-mediated knockdown of Bax substantially prevented mitochondrial permeability, release of intra-mitochondrial pro-apoptotic proteins. Cell death was inhibited by siRNA-mediated knockdown of Bax, AIF or EndoG. Although we observed several biochemical markers of apoptosis, caspase activation was not detected either by western blotting, fluorescence activity assays or by using caspase inhibitors to inhibit cell death. This was further supported by findings that (1) in vitro exposure of recombinant human caspases to HOCl caused significant inhibition of caspase activity and (2) the addition of HOCl to staurosporine-treated MPCs inhibited the activity of cellular caspases. Our results show for the first time that HOCl induced Bax-dependent mitochondrial permeability which led to cell death without caspase activity by processes involving AIF/EndoG-dependent pathways. Our study provides a novel insight into the potential mechanisms of cell death in the inflamed human joint. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Agrocybe aegerita peroxidase/peroxygenase (AaP) is an extracellular fungal biocatalyst that selectively hydroxylates the aromatic ring of naphthalene. Under alkaline conditions, the reaction proceeds via the formation of an intermediary product with a molecular mass of 144 and a characteristic UV absorption spectrum (A(max) 210, 267, and 303 nm). The compound was semistable at pH 9 but spontaneously hydrolyzed under acidic conditions (pH<7) into 1-naphthol as major product and traces of 2-naphthol. Based on these findings and literature data, we propose naphthalene 1,2-oxide as the primary product of AaP-catalyzed oxygenation of naphthalene. Using (18)O-labeled hydrogen peroxide, the origin of the oxygen atom transferred to naphthalene was proved to be the peroxide that acts both as oxidant (primary electron acceptor) and oxygen source.
Resumo:
Copper-zinc superoxide dismutase (Cu,ZnSOD) is the antioxidant enzyme that catalyzes the dismutation of superoxide (O2•−) to O2 and H2O2. In addition, Cu,ZnSOD also exhibits peroxidase activity in the presence of H2O2, leading to self-inactivation and formation of a potent enzyme-bound oxidant. We report in this study that lipid peroxidation of l-α-lecithin liposomes was enhanced greatly during the SOD/H2O2 reaction in the presence of nitrite anion (NO2−) with or without the metal ion chelator, diethylenetriaminepentacetic acid. The presence of NO2− also greatly enhanced α-tocopherol (α-TH) oxidation by SOD/H2O2 in saturated 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine liposomes. The major product identified by HPLC and UV-studies was α-tocopheryl quinone. When 1,2-diauroyl-sn-glycero-3-phosphatidylcholine liposomes containing γ-tocopherol (γ-TH) were incubated with SOD/H2O2/NO2−, the major product identified was 5-NO2-γ-TH. Nitrone spin traps significantly inhibited the formation of α-tocopheryl quinone and 5-NO2-γ-TH. NO2− inhibited H2O2-dependent inactivation of SOD. A proposed mechanism of this protection involves the oxidation of NO2− by an SOD-bound oxidant to the nitrogen dioxide radical (•NO2). In this study, we have shown a new mechanism of nitration catalyzed by the peroxidase activity of SOD. We conclude that NO2− is a suitable probe for investigating the peroxidase activity of familial Amyotrophic Lateral Sclerosis-linked SOD mutants.
Resumo:
Chronic and systemic treatment of rodents with rotenone, a classical inhibitor of mitochondrial respiratory complex I, results in neurochemical, behavioral, and neuropathological features of Parkinson's disease. The aim of the present study was to evaluate whether brain mitochondria from old rats (24 months old) would be more susceptible to rotenone-induced inhibition of oxygen consumption and increased generation of H2O2 than mitochondria from young-adult rats (3-4 months old). Isolated brain mitochondria were incubated in the presence of different rotenone concentrations (5, 10, and 100nM), and oxygen consumption and H2O2 production were measured during respiratory states 3 (ADP-stimulated respiration) and 4 (resting respiration). Respiratory state 3 and citrate synthase activity were significantly lower in mitochondria from old rats. Mitochondria from young-adult and old rats showed similar sensitivity to rotenone-induced inhibition of oxygen consumption. Similarly, H2O2 production rates by both types of mitochondria were dose-dependently stimulated to the same extent by increasing concentrations of rotenone. We conclude that rotenone exerts similar effects on oxygen consumption and H2O2 production by isolated brain mitochondria from young-adult and old rats. Therefore, aging does not increase the mitochondrial H2O2 generation in response to complex I inhibition.
Resumo:
The aim of this study was to evaluate the differential sensitivity of sugarcane genotypes to H2O2 in root medium. As a hypothesis, the drought tolerant genotype would be able to minimize the oxidative damage and maintain the water transport from roots to shoots, reducing the negative effects on photosynthesis. The sugarcane genotypes IACSP94-2094 (drought tolerant) and IACSP94-2101 (drought sensitive) were grown in a growth chamber and exposed to three levels of H2O2 in nutrient solution: control; 3mmolL(-1) and 80mmolL(-1). Leaf gas exchange, photochemical activity, root hydraulic conductance (Lr) and antioxidant metabolism in both roots and leaves were evaluated after 15min of treatment with H2O2. Although, root hydraulic conductance, stomatal aperture, apparent electron transport rate and instantaneous carboxylation efficiency have been reduced by H2O2 in both genotypes, IACSP94-2094 presented higher values of those variables as compared to IACSP94-2101. There was a significant genotypic variation in relation to the physiological responses of sugarcane to increasing H2O2 in root tissues, being root changes associated with modifications in plant shoots. IACSP94-2094 presented a root antioxidant system more effective against H2O2 in root medium, regardless H2O2 concentration. Under low H2O2 concentration, water transport and leaf gas exchange of IACSP94-2094 were less affected as compared to IACSP94-2101. Under high H2O2 concentration, the lower sensitivity of IACSP94-2094 was associated with increases in superoxide dismutase activity in roots and leaves and increases in catalase activity in roots. In conclusion, we propose a general model of sugarcane reaction to H2O2, linking root and shoot physiological responses.
Resumo:
The general mechanism for the photodegradation of polyethyleneglycol (PEG) by H2O2/UV was determined studying the photooxidation of small model molecules, like low molecular weight ethyleneglycols (tetra-, tri-, di-, and ethyleneglycol). After 30 min of irradiation the average molar mass (Mw) of the degradated PEG, analysed by GPC, fall to half of its initial value, with a concomitant increase in polydispersitivity and number of average chain scission (S), characterizing a random chain scission process yielding oligomers and smaller size ethyleneglycols. HPLC analysis of the photodegradation of the model ethyleneglycols proved that the oxidation mechanism involved consecutive reactions, where the larger ethyleneglycols gave rise, successively, to smaller ones. The photodegradation of ethyleneglycol lead to the formation of low molecular weight carboxylic acids, like glycolic, oxalic and formic acids.
Resumo:
Yerba mate (Ilex paraguariensis) is rich in several bioactive compounds that can act as free radical scavengers. Since oxidative DNA damage is involved in various pathological states such as cancer, the aim of this study was to evaluate the antioxidant activity of mate tea as well as the ability to influence DNA repair in male Swiss mice. Forty animals were randomly assigned to four groups. The animals received three different doses of mate tea aqueous extract, 0.5, 1.0 or 2.0 g/kg, for 60 days. After intervention, the liver, kidney and bladder cells were isolated and the DNA damage induced by H2O2 was investigated by the comet assay. The DNA repair process was also investigated for its potential to protect the cells from damage by the same methodology. The data presented here show that mate tea is not genotoxic in liver, kidney and bladder cells. The regular ingestion of mate tea increased the resistance of DNA to H2O2-induced DNA strand breaks and improved the DNA repair after H2O2 challenge in liver cells, irrespective of the dose ingested. These results suggest that mate tea could protect against DNA damage and enhance the DNA repair activity. Protection may be afforded by the antioxidant activity of the mate tea's bioactive compounds
Resumo:
The concentration of hydrogen peroxide is an important parameter in the azo dyes decoloration process through the utilization of advanced oxidizing processes, particularly by oxidizing via UV/H2O2. It is pointed out that, from a specific concentration, the hydrogen peroxide works as a hydroxyl radical self-consumer and thus a decrease of the system`s oxidizing power happens. The determination of the process critical point (maximum amount of hydrogen peroxide to be added) was performed through a ""thorough mapping"" or discretization of the target region, founded on the maximization of an objective function objective (constant of reaction kinetics of pseudo-first order). The discretization of the operational region occurred through a feedforward backpropagation neural model. The neural model obtained presented remarkable coefficient of correlation between real and predicted values for the absorbance variable, above 0.98. In the present work, the neural model had, as phenomenological basis the Acid Brown 75 dye decoloration process. The hydrogen peroxide addition critical point, represented by a value of mass relation (F) between the hydrogen peroxide mass and the dye mass, was established in the interval 50 < F < 60. (C) 2007 Elsevier B.V. All rights reserved.