975 resultados para H-2 separation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The taxonomic status of Sebastes vulpes and S. zonatus were clarified by comprehensive genetic (amplif ied fragment length polymorphisms [AFLP] and mitochondrial DNA [mtDNA] variation) and morphological analyses on a total of 65 specimens collected from a single locality. A principal coordinate analysis based on 364 AFLP loci separated the specimens completely into two genetically distinct groups that corresponded to S. vulpes and S. zonatus according to body coloration and that indicated that they are reproductively isolated species. Significant morphological differences were also evident between the two groups; 1) separation by principal component analysis based on 31 measurements, and 2)separation according to differences in counts of gill rakers and dorsal-fin spines without basal scales, and in the frequencies of specimens with small scales on the lower jaw. Restriction of gene flow between the two groups was also indicated by the pairwise ΦST values estimated from variations in partial sequences from the mtDNA control region, although the minimum spanning network did not result in separation into distinct clades. The latter was likely due to incomplete lineage sorting between S. vulpes and S. zonatus owing to their recent speciation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyimides were prepared from diamines: 2,4,6-trimethyl-1,3-phenylenediamine (3MPDA) and 2,3,4,5-tetramethyl-1,4-phenylenediamine (4MPDA). 1,4-Bis(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA), 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA), 3,3'-4,4'-diphenylsulphone tetracarboxylic dianhydride (SO(2)PDA), 3,3',4,4'-diphenylsulphide tetracarboxylic dianhydride (SPDA), pyromellitic dianhydride (PMDA), and 2,2'-bis(3,4-dicarboxyphenyl)hexa-fluoroisopropane dianhydride (6FDA) were used as dianhydride. The gas permeabilities of H-2, O-2 and N-2 through the polyimides were measured at temperatures from 30 degrees C to 90 degrees C. The results show that as methyl and trifluoromethyl substitution groups densities increase from 7.73 x 10(-3) molcm(-3) to 13.50 x 10(-3)molcm(-3), the peameability of H-2 increases 10-fold at 60% loss of permselectivity of H-2/N-2 however, the permeability of O-2 increases 20-fold at 20% loss of permselectivity of O-2/N-2. For O-2/N-2 separation, PMDA-3MPDA has similar performance to 6FDA-3MPDA and 6FDA-4MPDA; all have higher permeabilities for O-2 than normal polyimides, and the P(O-2)/alpha(O-2/N-2) trade-off relationships lie on the upper bound line for polymers. (C) 1999 Society of Chemical Industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of copolyimides were prepared from 2,4,6-trimethyl-1,3-phenylenediamines (3MPDA), 3,3',4,4'-benzophenone tetracarboxyl dianhydride (BTDA), and pyromellitic dianhydride (PMDA). Modification of the copolyimides by ultraviolet irradiation were carried out. Gas permeabilities of H-2, O-2, and N-2 through the copolyimides and photochemically crosslinked copolyimides were measured at temperatures from 30 to 90 degrees C. The relationships between gas permeabilities and temperature are in agreement with the Arrhenius equation. The structure of photochemically crosslinked copolyimides were characterized by Fourier transform infrared and gel measurement methods. Linear relationships between both log P and E-p and the volume fraction of PMDA-3MPDA exist. Photochemically crosslinking modification result in a decrease in gas permeability and an increase in E-p and alpha(H-2/N-2) for all the copolyimides. For H-2/N-2 separation, photochemically crosslinked copolyimides are of higher gas permeabilities and permselectivities simultaneously than normal polyimides. (C) 1999 John Wiley & Sons, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Permeability coefficients of H-2, O-2, and N2 were measured under 10 atm at the temperature from ambient temperature up to 150 degrees C in a series of structurally different aromatic homo- and copolyimides, which were prepared from 4,4'-oxydianiline (ODA) or 4,4'-methylene dianiline (MDA) with various aromatic dianhydrides. The study shows that the molecular structure of the polyimides strongly influences gas permeability and permselectivity. As a result, the permeability coefficients of the polyimide membranes for each gas vary by over two orders of magnitude. In general, among the polyimide membranes studied, the increase in permeability of polymers is accompanied by the decrease in permselectivity, and the MDA-based polyimide membranes have higher permeability than ODA-based ones. Among the polyimides prepared from bridged dianhydrides, the permeability coefficients to H-2, O-2, and N-2 are progressively increased in the order BPDA < BTDA < ODPA similar to TDPA < DSDA ( SiDA < 6FDA, while H-2/N-2 and O-2/N-2 permselectivity coefficients are progressively decreased in the same order. The copolyimide membranes, which were prepared from 3,3',4,4' biphenyltetracarboxylic dianhydride (BPDA), bis(3,4-dicarboxyphenyl)dimethylsilane dianhydride (SiDA), and ODA, have favorable gas separation properties and are useful for H-2/N-2 separation applications. (C) 1996 John Wiley & Sons, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pd and Pd-Ag (24 wt.%) alloy composite membrane were prepared by electroless plating and magnetron sputtering, respectively. The membranes were characterized by scanning electron microscopy (SEM) and H-2 permeation measurement. Commercial microfiltration ceramic membrane were coated with gamma-Al2O3-based layer by the sol-gel method and used as substrate of Pd and Pd-Ag alloy film. Both the as-prepared membranes were shown: to be He gas-tight at room temperature with a thickness of <1 mu m. Permeation results showed that H-2 permeation through these composite membranes is mainly dominated by the surface chemistry of H-2 on or/and in the membranes. The membranes exhibited a high permeation rate of H-2 and a H-2/N-2 permselectivity of higher than 60 in the optimized operation conditions. (C) 2000 Elsevier Science B.V. All rights reserved.