901 resultados para H -ATPase vacuolar (VATPase)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Annona cherimola é um fruto exótico, com um sabor agradável. Este fruto tem um elevado potencial comercial, mas apresenta um tempo médio de vida curto devido ao seu rápido amadurecimento. Por esta razão é necessário conhecer melhor o processo de amadurecimento deste fruto. Na Região Autónoma da Madeira a cultura da anoneira é muito importante em termos comerciais. O processo de amadurecimento leva a diversas modificações bioquímicas e fisiológicas. Existem várias enzimas e substâncias que integram este processo. Neste trabalho iremos estudar os genes das enzimas malato desidrogenase e H+ ATPase vacuolar que estão envolvidos no processo de amadurecimento dos frutos. Utilizando as técnicas de RACE e sequenciação foi possível determinar a sequência nucleotídica do cDNA destes genes. O cDNA da malato desidrogenase é composto por 1364 nucleótidos, contendo uma zona 5’ UTR com 84 nucleótidos, uma zona 3’ UTR com 284 nucleótidos e um sinal de poliadenilação com a sequência AATAAA. A ORF apresenta 996 nucleótidos, codificando uma proteína com 332 aminoácidos. Para a H+ ATPase vacuolar foi amplificado o cDNA da subunidade C do domínio V1. Esta apresenta 799 nucleótidos, dos quais 36 são da 5’ UTR, 266 da 3’ UTR e 498 da ORF. A ORF codifica uma proteína com 166 aminoácidos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O chumbo é um importante poluente ambiental. A levedura Saccharomyces cerevisiae constitui um modelo útil para o estudo dos efeitos tóxicos do chumbo. O conhecimento dos mecanismos de defesa e resistência à presença de metais pesados poderá ser útil em tecnologias de proteção ambiental, nomeadamente no desenvolvimento de novas metodologias para a biorremediação de metais pesados. O presente trabalho teve como objetivo avaliar o impacto do Pb na capacidade proliferativa, na integridade membranar e na produção intracelular de espécies reativas de oxigénio (ROS), na estirpe laboratorial da levedura Saccharomyces cerevisiae BY4741 (estirpe selvagem, WT). Foi também estudado o papel das mitocôndrias, como fonte de ROS induzida por Pb, e o envolvimento da H+-ATPase vacuolar (V-ATPase) e de transportadores vacuolares pertencentes à superfamília ABC (de ATP-binding cassette) na defesa contra a toxicidade do Pb. O estudo cinético do impacto de duas concentrações de Pb na viabilidade das leveduras (avaliado através de um ensaio clonogénico), na integridade da membrana celular (determinada com iodeto de propídio) e na produção intracelular de ROS (o anião superóxido foi detetado com dihidroetídio e o peróxido de hidrogénio com 2’,7’- diclorodihidrofluoresceína), revelou uma perda progressiva da capacidade proliferativa (53 e 17% de células viáveis, após a exposição durante 3h a 250 ou 1000 µmol/l de chumbo, respetivamente), coincidente com a acumulação intracelular de anião superóxido e de peróxido de hidrogénio, na ausência de perda da integridade membranar. A importância das mitocôndrias na produção de ROS, induzida por chumbo, foi levada a cabo usando um mutante deficiente respiratório desprovido de ADN mitocondrial (ƿ0). Quando comparado com a respetiva estirpe parental, o mutante ƿ0 apresentou uma maior resistência ao Pb e uma menor produção de ROS induzida por Pb. A exposição das células da estirpe BY4741 a 250 e 1000 µmol/l de chumbo originou a formação de 49 e 58% de células deficientes respiratórias, respetivamente. A função da V-ATPase, na desintoxicação de chumbo, foi avaliada utilizando mutantes com uma estrutura vacuolar normal mas defetivos em subunidades da VATPase (vma1Δ, vma2Δ, vma3Δ e vph1Δ). Comparativamente às células da estirpe WT, todos os mutantes testados, sem V-ATPase funcional, apresentaram uma maior suscetibilidade ao Pb. O papel dos transportadores vacuolares pertencentes à superfamília ABC, na defesa contra a toxicidade induzida por chumbo, foi levada a cabo utilizando mutantes sem os transportadores Ycf1p ou Vmr1p. Os resultados preliminares mostraram que quando comparadas com as células da estirpe WT, as células das estirpes ycf1Δ ou vmr1Δ não apresentavam uma maior perda da viabilidade. A modificação da morfologia vacuolar, em células expostas a chumbo, foi visualizada utilizando a estirpe Vma2p-GFP. O tratamento das células com Pb originou a fusão dos vacúolos de tamanho médio num único vacúolo de grande dimensão. Em conclusão, os estudos desenvolvidos no presente trabalho, utilizando a estirpe laboratorial BY4741, mostraram que a perda da capacidade proliferativa das leveduras, induzida pelo chumbo, pode ser atribuída à acumulação intracelular do anião superóxido e de peróxido de hidrogénio. As mitocôndrias parecem ser uma das principais fontes de ROS induzido por Pb e, simultaneamente, um dos principais alvos da sua toxicidade. Em S. cerevisiae, o vacúolo desempenha um papel importante na desintoxicação do Pb. A modificação da morfologia vacuolar após exposição ao chumbo poderá ser a consequência da acumulação de Pb no vacúolo. Enquanto os transportadores da superfamília ABC parecem não estar envolvidos na sequestração vacuolar de Pb, é necessária a presença, num estado funcional, da V-ATPase para que ocorra a compartimentação do Pb. Muito provavelmente, a compartimentação do Pb no vacúolo previne a sua acumulação no citosol e o desencadear dos respetivos efeitos tóxicos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

根质膜具有重要的生物学功能,它参与了根响应脱落酸(ABA)的一系列活动。尽管已经有很多有关ABA影响根的生长和发育的报道,但是在蛋白质组水平上研究参与ABA信号转导及相关活动的质膜蛋白质的报道还未见到。我们期望利用蛋白质组学技术平台研究外源ABA胁迫下水稻根质膜与ABA功能相关的蛋白质组的变化。 本论文通过双向电泳(2DE)结合质谱(MALDI-TOF MS 和 MALDI-TOF/TOF MS)分析的方法鉴定了102个质膜相关蛋白质。这些蛋白质功能涉及到跨膜运输(16.2%)、胁迫反应(14.3%)、物质运输(4.8%)、细胞骨架动态变化(5.7%)、细胞壁重建(3.8%)、碳代谢和能量循环(13.3%)、蛋白质代谢(14.3%)、信号转导(18.1%)和其他功能的蛋白质(4.8%),以及未知功能的蛋白质(2.9%)。其中大约30%的蛋白质以同工型的形式存在。在这些鉴定结果中,有10个斑点(代表10种蛋白质)已被报道为质膜特异的蛋白质;68个蛋白质斑点(代表58种蛋白质)是质膜相关蛋白质。其余54个蛋白质斑点(代表42种蛋白质)是首次在水稻根的质膜囊泡中被鉴定出来。 在ABA处理条件下,我们在2DE胶上发现了15个响应ABA调节的蛋白质斑点。9个上调的蛋白质斑点分别代表以下9种蛋白质:vacuolar proton-ATPase A subunit, vacuolar ATPase B subunit、patatin、 Salt-stress root protein RS1、谷氨酰氨合成酶(Glutamine synthetase,GS)、OSR40c1、H+-exporting ATPase (vacuolar ATPase E subunit)、甘油醛-3-磷酸脱氢酶I型(glyceraldehyde-3- phosphate dehydrogenase, type I,GADPH)和醛缩酶C-1(aldolase C-1)。6个下调的蛋白质斑点分别代表4种蛋白质:endosperm lumenal binding protein、remorin protein、富含脯氨酸蛋白质(glycine-rich protein,GRP)和蔗糖合成酶(sucrose synthase, SuSy)。其中,OSR40c1和endosperm lumenal binding protein与蛋白质合成相关,从它们与ABA的关系中可以看出,ABA可能抑制了细胞的蛋白质合成。而vacuolar proton-ATPase A subunit、vacuolar ATPase B subunit和 H+-exporting ATPase参与了细胞质pH的调控,ABA致使了细胞质pH的上升。甘油醛-3-磷酸脱氢酶I型、醛缩酶C-1和蔗糖合酶参与了细胞壁的生长发育,ABA的作用可能导致了细胞壁生长发育的延迟。ABA促使Patatin上升,其作用可能与质膜膜脂的降解有关。而ABA的刺激也使谷氨酰氨合成酶的表达显著上升,谷氨酰氨合成酶可以去除细胞内有害的游离NH+4。同时还有未知功能的富含脯氨酸蛋白质(glycine-rich protein,GRP)同样受到ABA的诱导,但具体的功能及其与ABA的关系还要进一步的实验证据。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We previously reported the identification of a novel family of immunomodulatory proteins, termed helminth defense molecules (HDMs), that are secreted by medically important trematode parasites. Since HDMs share biochemical, structural, and functional characteristics with mammalian cathelicidin-like host defense peptides (HDPs), we proposed that HDMs modulate the immune response via molecular mimicry of host molecules. In the present study, we report the mechanism by which HDMs influence the function of macrophages. We show that the HDM secreted by Fasciola hepatica (FhHDM-1) binds to macrophage plasma membrane lipid rafts via selective interaction with phospholipids and/or cholesterol before being internalized by endocytosis. Following internalization, FhHDM-1 is rapidly processed by lysosomal cathepsin L to release a short C-terminal peptide (containing a conserved amphipathic helix that is a key to HDM function), which then prevents the acidification of the endolysosomal compartments by inhibiting vacuolar ATPase activity. The resulting endolysosomal alkalization impedes macrophage antigen processing and prevents the transport of peptides to the cell surface in conjunction with MHC class II for presentation to CD4(+) T cells. Thus, we have elucidated a novel mechanism by which helminth pathogens alter innate immune cell function to assist their survival in the host.-Robinson, M. W., Alvarado, R., To, J., Hutchinson, A. T., Dowdell, S. N., Lund, M., Turnbull, L., Whitchurch, C. B., O'Brien, B. A., Dalton, J. P., Donnelly, S. A helminth cathelicidin-like protein suppresses antigen processing and presentation in macrophages via inhibition of lysosomal vATPase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Long-term effects of angiotensin II (Ang II) on vacuolar H(+)-ATPase were studied in a SV40-transformed cell line derived from rat proximal tubules (IRPTC). Using pH(i) measurements with the fluorescent dye BCECF, the hormone increased Na(+)-independent pH recovery rate from an NH(4)Cl pulse from 0.066 +/- 0.014 pH U/min (n = 7) to 0.14 +/- 0.021 pH U/min (n = 13; p < 0.05) in 10 h Ang II (10(-9) M)-treated cells. The increased activity of H(+)-ATPase did not involve changes in mRNA or protein abundance of the B2 subunit but increased cell surface expression of the V-ATPase. Inhibition of tyrosine kinase by genistein blocked Ang II-dependent stimulation of H(+)-ATPase. Inhibition of phosphatidylinositol-3-kinase (PI3K) by wortmannin and of p38 mitogen-activated protein kinase (MAPK) by SB 203580 also blocked this effect. Thus, long-term exposure of IRPTC cells to Ang II causes upregulation of H(+)-ATPase activity due, at least in part, to increased B2 cell surface expression. This regulatory pathway is dependent on mechanisms involving tyrosine kinase, p38 MAPK, and PI3K activation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background/Aims: It has been widely accepted that chloride ions moving along chloride channels act to dissipate the electrical gradient established by the electrogenic transport of H(+) ions performed by H(+)-ATPase into subcellular vesicles. Largely known in intracellular compartments, this mechanism is also important at the plasma membrane of cells from various tissues, including kidney. The present work was performed to study the modulation of plasma membrane H(+)-ATPase by chloride channels, in particular, CFTR and ClC-5 in kidney proximal tubule. Methods and Results: Using in vivo stationary microperfusion, it was observed that ATPase-mediated HCO(3)(-) reabsorption was significantly reduced in the presence of the Cl(-) channels inhibitor NPPB. This effect was confirmed in vitro by measuring the cell pH recovery rates after a NH(4)Cl pulse in immortalized rat renal proximal tubule cells, IRPTC. In these cells, even after abolishing the membrane potential with valinomycin, ATPase activity was seen to be still dependent on Cl(-). siRNA-mediated CFTR channels and ClC-5 chloride-proton exchanger knockdown significantly reduced H(+)-ATPase activity and V-ATPase B2 subunit expression. Conclusion: These results indicate a role of chloride in modulating plasma membrane H(+)-ATPase activity in proximal tubule and suggest that both CFTR and ClC-5 modulate ATPase activity. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As adults, anadromous lampreys migrate from seawater into freshwater rivers, where they require branchial ion (NaCl) absorption for osmoregulation. In teleosts and elasmobranchs, pharmological, immunohistochemical, and molecular data support roles for Na+/K+-ATPase (NPPase), carbonic anhydrase II (CAII), and vacuolar H+-ATPase (V-ATPase) in two different models of branchial ion absorption. To our knowledge, these transport-related proteins have not been studied in adult freshwater lampreys, and therefore it is not known if they are expressed, or have similar functions, in lampreys. The purpose of this study was to localize NPPase, CAII, and V-ATPase in the gills of adult freshwater lampreys and determine if any of these transport-related proteins are expressed in the same cells. Heterologous antibodies were used to localize the three proteins in gill tissue from pouched lamprey (Geotria australis). Immunoreactivity (IR) for all three proteins occurred between, and at the base of, lamellae in cells that match previous descriptions of mitochondrion-rich-cells (MRCs). NPPase-IR was always on the basolateral side of cells that did not stain for CAII or V-ATPase. In contrast, CAII-IR was always on the apical side of cells that also contained diffuse V-ATPase-IR. Therefore, we have identified two types of MRC in adult freshwater lamprey gills based on immunohistochemical staining for three transport proteins. A model of ion transport, based on our results, is proposed for adult freshwater lampreys. 

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose The role of v-ATPases in cancer biology is being increasingly recognized. Yeast studies indicate that the tyrosine kinase inhibitor imatinib may interact with the v-ATPase genes and alter the course of cancer progression. Data from humans in this regard are lacking.

Methods We constructed 55 lymphoblastoid cell lines from pedigreed, cancer-free human subjects and treated them with IC20 concentration of imatinib mesylate. Using these cell lines, we (i) estimated the heritability and differential expression of 19 genes encoding several subunits of the v-ATPase protein in response to imatinib treatment; (ii) estimated the genetic similarity among these genes; and (iii) conducted a high-density scan to find cis-regulating genetic variation associated with differential expression of these genes.

Results We found that the imatinib response of the genes encoding v-ATPase subunits is significantly heritable and can be clustered to identify novel drug targets in imatinib therapy. Further, five of these genes were significantly cis-regulated and together represented nearly half-log fold change in response to imatinib (p = 0.0107) that was homogenous (p = 0.2598).

Conclusions Our results proffer support to the growing view that personalized regimens using proton pump inhibitors or v-ATPase inhibitors may improve outcomes of imatinib therapy in various cancers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resistance of cancer cells towards chemotherapy is the major cause of therapy failure. Hence, the evaluation of cellular defense mechanisms is essential in the establishment of new chemotherapeutics. In this study, classical intrinsic and acquired as well as new resistance mechanisms relevant in the cellular response to the novel vacuolar H+-ATPase inhibitor archazolid B were investigated. Archazolid B, originally produced by the myxobacterium Archangium gephyra, displayed cytotoxicity in the low nanomolar range on a panel of cancer cell lines. The drug showed enhanced cytotoxic activity against nearly all cancerous cells compared to their non-cancerous pendants. With regards to ABC transporters, archazolid B was identified as a moderate substrate of ABCB1 (P-glycoprotein) and a weak substrate of ABCG2 (BCRP), whereas hypersensitivity was observed in ABCB5-expressing cells. The cytotoxic effect of archazolid B was shown to be independent of the cellular p53 status. However, cells expressing constitutively active EGFR displayed significantly increased resistance. Acquired drug resistance was studied by establishing an archazolid B-resistant MCF-7 cell line. Experiments showed that this secondary resistance was not conferred by aberrant expression or DNA mutations of the gene encoding vacuolar H+-ATPase subunit c, the direct target of archazolid B. Instead, a slight increase of ABCB1 and a significant overexpression of EGFR as well as reduced proliferation may contribute to acquired archazolid B resistance. For identification of new resistance strategies upon archazolid B treatment, omics data from bladder cancer and glioblastoma cells were analyzed, revealing drastic disturbances in cholesterol homeostasis, affecting cholesterol biosynthesis, uptake and transport. As shown by filipin staining, archazolid B led to accumulation of free cholesterol in lysosomes, which triggered sterol responses, mediated by SREBP-2 and LXR, including up-regulation of HMGCR, the key enzyme of cholesterol biosynthesis. Furthermore, inhibition of LDL uptake as well as impaired LDLR surface expression were observed, indicating newly synthesized cholesterol to be the main source of cholesterol in archazolid B-treated cells. This was proven by the fact that under archazolid B treatment, total free cholesterol levels as well as cell survival were significantly reduced by inhibiting HMGCR with fluvastatin. The combination of archazolid B with statins may therefore be an attractive strategy to circumvent cholesterol-mediated cell survival and in turn potentiate the promising anticancer effects of archazolid B.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mutations in the B1 subunit of the multisubunit vacuolar ATPase cause autosomal-recessive distal renal tubular acidosis and sensorineural deafness. Here, we report a novel frameshift mutation that truncates the C-terminus of the human B1 subunit. This mutant protein failed to assemble with other subunits in the cytosol to form the complex that can be targeted to vesicular structures in mammalian cells. Loss of proton pump activity was demonstrated in a functional complementation assay in B-subunit null yeast. The mutation caused loss of a discreet C-terminal region critical for subunit interaction not related to the C-terminal PDZ motif. Co-expression studies failed to demonstrate dominant negative effects of this truncated mutant over wild-type B1. Analysis of 12 reported B1 subunit missense mutations showed one polymorphic allele had intact pump function, two point mutants had intact assembly but defective proton pumping, and the remaining nine had disrupted assembly with no pump function. One presumed polymorphic allele was actually an inactivating mutation. Our study shows that multiple mechanisms of pump dysfunction result from B1 subunit mutations with a common outcome being defective assembly. Polymorphisms of the B1 subunit in the general population may affect renal acidification and urinary chemistry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mutations in the vacuolar–type H+-ATPase B1 subunit gene ATP6V1B1 cause autosomal–recessive distal renal tubular acidosis (dRTA). We previously identified a single-nucleotide polymorphism (SNP) in the human B1 subunit (c.481G.A; p.E161K) that causes greatly diminished pump function in vitro. To investigate the effect of this SNP on urinary acidification, we conducted a genotype-phenotype analysis of recurrent stone formers in theDallas and Bern kidney stone registries. Of 555 patients examined, 32 (5.8%) were heterozygous for the p.E161K SNP, and the remaining 523 (94.2%) carried two wild–type alleles. After adjustment for sex, age, body mass index, and dietary acid and alkali intake, p.E161K SNP carriers had a nonsignificant tendency to higher urinary pH on a random diet (6.31 versus 6.09; P=0.09). Under an instructed low–Ca and low–Na diet, urinary pH was higher in p.E161K SNP carriers (6.56 versus 6.01; P,0.01). Kidney stones of p.E161K carriers were more likely to contain calcium phosphate than stones of wild-type patients. In acute NH4Cl loading, p.E161K carriers displayed a higher trough urinary pH (5.34 versus 4.89; P=0.01) than wild-type patients. Overall, 14.6% of wild-type patients and 52.4% of p.E161K carriers were unable to acidify their urine below pH 5.3 and thus, can be considered to have incomplete dRTA. In summary, our data indicate that recurrent stone formers with the vacuolar H+-ATPase B1 subunit p.E161K SNP exhibit a urinary acidification deficit with an increased prevalence of calcium phosphate– containing kidney stones. The burden of E161K heterozygosity may be a forme fruste of dRTA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of the vacuolar H+-ATPase inhibitor bafilomycin A1 (Baf A1) on the localization of pre-Golgi intermediate compartment (IC) and Golgi marker proteins was used to study the role of acidification in the function of early secretory compartments. Baf A1 inhibited both brefeldin A- and nocodazole-induced retrograde transport of Golgi proteins to the endoplasmic reticulum (ER), whereas anterograde ER-to-Golgi transport remained largely unaffected. Furthermore, p58/ERGIC-53, which normally cycles between the ER, IC, and cis-Golgi, was arrested in pre-Golgi tubules and vacuoles, and the number of p58-positive ∼80-nm Golgi (coatomer protein I) vesicles was reduced, suggesting that the drug inhibits the retrieval of the protein from post-ER compartments. In parallel, redistribution of β-coatomer protein from the Golgi to peripheral pre-Golgi structures took place. The small GTPase rab1p was detected in short pre-Golgi tubules in control cells and was efficiently recruited to the tubules accumulating in the presence of Baf A1. In contrast, these tubules showed no enrichment of newly synthesized, anterogradely transported proteins, indicating that they participate in retrograde transport. These results suggest that the pre-Golgi structures contain an active H+-ATPase that regulates retrograde transport at the ER–Golgi boundary. Interestingly, although Baf A1 had distinct effects on peripheral pre-Golgi structures, only more central, p58-containing elements accumulated detectable amounts of 3-(2,4-dinitroanilino)-3′-amino-N-methyldipropylamine (DAMP), a marker for acidic compartments, raising the possibility that the lumenal pH of the pre-Golgi structures gradually changes in parallel with their translocation to the Golgi region.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

While effector molecules produced by activated macrophages (including nitric oxide, tumor necrosis factor α, interleukin 1, etc.) help to eliminate pathogens, high levels of these molecules can be deleterious to the host itself. Despite their importance, the mechanisms modulating macrophage effector functions are poorly understood. This work introduces two key negative regulators that control the levels and duration of macrophage cytokine production. Vacuolar-type H+-ATPase (V-ATPase) and calcineurin (Cn) constitutively act in normal macrophages to suppress expression of inflammatory cytokines in the absence of specific activation and to inhibit macrophage cytokine responses induced by bacterial lipopolysaccharide (V-ATPase), interferon γ (V-ATPase and Cn), and calcium (Ca2+) flux (Cn). Cn and V-ATPase modulate effector gene expression at the mRNA level by inhibiting transcription factor NF-κB. This negative regulation by Cn is opposite to its crucial positive role in T cells, where it activates NFAT transcription factor(s) leading to expression of interleukin 2, tumor necrosis factor α, and other cytokine genes. The negative effects of V-ATPase and Cn on NF-κB-dependent gene expression are not limited to the macrophage lineage, as similar effects have been seen with a murine fibroblast cell line and with primary astrocytes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neutrophils in tissue culture spontaneously undergo programmed cell death (apoptosis), a process characterized by well-defined morphological alterations affecting the cell nucleus. We found that these morphological changes were preceded by intracellular acidification and that acidification and the apoptotic changes in nuclear morphology were both delayed by granulocyte colony-stimulating factor (G-CSF). Among the agents that defend neutrophils against intracellular acidification is a vacuolar H(+)-ATPase that pumps protons out of the cytosol. When this proton pump was inhibited by bafilomycin A1, G-CSF no longer protected the neutrophils against apoptosis. We conclude that G-CSF delays apoptosis in neutrophils by up-regulating the cells' vacuolar H(+)-ATPase and that intracellular acidification is an early event in the apoptosis program.