29 resultados para Greigite


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variety of adhesive support-films were tested for their ability to adhere various biological specimens for transmission electron microscopy. Support films primed with 3-amino-propyl triethoxy silane (APTES), poly-L-lysine, carbon and ultraviolet-B (UV-B)-irradiated carbon were tested for their ability to adhere a variety of biological specimens including axenic cultures of Bacillus subtilis and Escherichia coli and wild-type magnetotactic bacteria. The effects of UV-B irradiation on the support film in the presence of air and electrostatic charge on primer deposition were tested and the stability of adhered specimens on various surfaces was also compared. APTES-primed UV-B-irradiated Pioloform(TM) was consistently the best adhesive, especially for large cells, and when adhered specimens were UV-B irradiated they became remarkably stable under an electron beam. This assisted the acquisition of in situ phase-contrast lattice images from a variety of biominerals in magnetotactic bacteria, in particular metastable greigite magnetosomes. Washing tests indicated that specimens adhering to APTES-primed UV-B-irradiated Pioloform(TM) were covalently coupled. The electron beam stability was hypothesised to be the result of mechanical strengthening of the specimen and support film and the reduced electrical resistance in the specimen and support film due to their polymerization and covalent coupling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural analogy between Ni-doped greigite minerals (Fe3S4) and the (Fe,Ni)S clusters present in biological enzymes has led to suggestions that these minerals could have acted as catalysts for the origin of life. However, little is known about the distribution and stability of Ni dopants in the greigite structure. We present here a theoretical investigation of mixed thiospinels (Fe1

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dating of sediment cores from the Baltic Sea has proven to be difficult due to uncertainties surrounding the 14C reservoir age and a scarcity of macrofossils suitable for dating. Here we present the results of multiple dating methods carried out on cores in the Gotland Deep area of the Baltic Sea. Particular emphasis is placed on the Littorina stage (8 ka ago to the present) of the Baltic Sea and possible changes in the 14C reservoir age of our dated samples. Three geochronological methods are used. Firstly, palaeomagnetic secular variations (PSV) are reconstructed, whereby ages are transferred to PSV features through comparison with varved lake sediment based PSV records. Secondly, lead (Pb) content and stable isotope analysis are used to identify past peaks in anthropogenic atmospheric Pb pollution. Lastly, 14C determinations were carried out on benthic foraminifera (Elphidium spec.) samples from the brackish Littorina stage of the Baltic Sea. Determinations carried out on smaller samples (as low as 4 µg C) employed an experimental, state-of-the-art method involving the direct measurement of CO2 from samples by a gas ion source without the need for a graphitisation step - the first time this method has been performed on foraminifera in an applied study. The PSV chronology, based on the uppermost Littorina stage sediments, produced ten age constraints between 6.29 and 1.29 cal ka BP, and the Pb depositional analysis produced two age constraints associated with the Medieval pollution peak. Analysis of PSV data shows that adequate directional data can be derived from both the present Littorina saline phase muds and Baltic Ice Lake stage varved glacial sediments. Ferrimagnetic iron sulphides, most likely authigenic greigite (Fe3S4), present in the intermediate Ancylus Lake freshwater stage sediments acquire a gyroremanent magnetisation during static alternating field (AF) demagnetisation, preventing the identification of a primary natural remanent magnetisation for these sediments. An inferred marine reservoir age offset (deltaR) is calculated by comparing the foraminifera 14C determinations to a PSV & Pb age model. This deltaR is found to trend towards younger values upwards in the core, possibly due to a gradual change in hydrographic conditions brought about by a reduction in marine water exchange from the open sea due to continued isostatic rebound.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 160 m mostly turbiditic late Pleistocene sediment sequence (IODP Expedition 308, Hole U1319A) from the Brazos-Trinity intraslope basin system off Texas was investigated with paleo- and rock magnetic methods. Numerous layers depleted in iron oxides and enriched by the ferrimagnetic iron-sulfide mineral greigite (Fe3S4) were detected by diagnostic magnetic properties. From the distribution of these layers, their stratigraphic context and the present geochemical zonation, we develop two conceptual reaction models of greigite formation in non-steady depositional environments. The "sulfidization model" predicts single or twin greigite layers by incomplete transformation of iron monosulfides with polysulfides around the sulfate methane transition (SMT). The "oxidation model" explains greigite formation by partial oxidation of iron monosulfides near the iron redox boundary during periods of downward shifting oxidation fronts. The stratigraphic record provides evidence that both these greigite formation processes act here at typical depths of about 12-14 mbsf and 3-4 mbsf. Numerous "fossil" greigite layers most likely preserved by rapid upward shifts of the redox zonation denote past SMT and sea floor positions characterized by stagnant hemipelagic sedimentation conditions. Six diagenetic stages from a pristine magnetite-dominated to a fully greigite-dominated magnetic mineralogy were differentiated by combination of various hysteresis and remanence parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rock magnetic/paleoclimatic/diagenetic relationships of sediments spanning the last 0.78 Ma have been investigated using samples collected from light and dark layers recovered at ODP Sites 794 (Yamato Basin) and 795 (Japan Basin). Rock-magnetic parameters (K, Kfd, ARM, SIRM, S-ratio) are shown to reflect diagenetic processes and climate-related variations in the concentration, mineralogy and grain-size of the magnetic minerals contained within the sediments. The magnetic mineralogy is dominated by ferrimagnetic (magnetite-type) minerals with a small contribution made by hematite and iron sulphides such as pyrrhotite and/or greigite. Magnetic mineral concentration and grain size vary between light and dark layers with the former characterized by a higher magnetic content and a finer magnetic grain size. Magnetite dissolution, related to sulfate reduction due to bacterial degradation of organic matter, is the process responsible for the magnetic characteristics observed in the dark layers, testifying to the reducing conditions in the basin. Variations in the rock magnetic properties of the sediments are strongly correlated with global oxygen isotope fluctuations, with glacial stages characterized by a lower magnetic mineral content and a coarser magnetic grain size relative to interglacial stages. Major downcore changes in the magnetic properties observed at Site 794 can be related to changes in the oceanographic conditions of the basin associated with the flow of the warm Tsushima Current into the Japan Sea at about 0.35-0.40 Ma ago.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diagenesis has extensively affected the magnetic mineral inventory of organic-rich late Quaternary sediments in the Niger deep-sea fan. Changes in concentration, grain size, and coercivity document modifications of the primary magnetic mineral assemblages at two horizons. The first front, the modern iron redox boundary, is characterized by a drastic decline in magnetic mineral content, coarsening of the grain size spectrum, and reduction in coercivity. Beneath a second front, the transition from the suboxic to the sulfidic anoxic domain, a further but less pronounced decrease in concentration and bulk grain size occurs. Finer grains and higher coercive magnetic constituents substantially increase in the anoxic environment. Low- and high-temperature experiments were performed on bulk sediments and on extracts which have also been examined by X-ray diffraction. Thermomagnetic analyses proved ferrimagnetic titanomagnetites of terrigenous provenance as the principal primary magnetic mineral components. Their broad range of titanium contents reflects the volcanogenic traits of the Niger River drainage areas. Diagenetic alteration is not only a grain size selective process but also critically depends on titanomagnetite composition. Low-titanium compounds are less resistant to diagenetic dissolution. Intermediate titanium content titanomagnetite thus persists as the predominant magnetic mineral fraction in the sulfidic anoxic sediments. At the Fe redox boundary, precipitation of authigenic, possibly bacterial, magnetite is documented. The presence of hydrogen sulfide in the pore water suggests a formation of secondary magnetic iron sulfides in the anoxic domain. Grain size-specific data argue for a gradual development of a superparamagnetic and single-domain iron sulfide phase in this milieu, most likely greigite.