936 resultados para Green Transport Infrastructure
Resumo:
In an age when escalating fuel prices, global warming and world resource depletion are of great concern, sustainable transport practices promise to define a new way of mobility into the future. With its comparatively minimal negative environmental impacts, non reliance on fuels and positive health effects, the simple bicycle ofers significant benefits to humankind. These benefits are evident worldwide where bicycles are successfully endorsed through improved infrastructure, supporting policies, public education and management. In Australia, the national, state and locall governments are introducing measures to improve and support green transport. This is necessary as current bicycle infrastructure is not always sufficient and the longstanding conflict with motorized transport still exists. The aim for the future is to implement sustainable hard and soft bicycle infrastructure globally; the challenges of such a task can be illustrated by the city of Brisbane, Australia.
Resumo:
Many economic, social and environmental sustainability problems associated with typical urban transportation systems have revealed the importance of three domains of action: vehicle, infrastructure and user. These domains need to be carefully reconsidered in search of a sustainable urban development path. Although intelligent transportation systems have contributed substantially to enhancing efficiency, safety and comfort of travel, questions related to users’ behaviors and preferences, which stimulate considerable environmental effects, still needed to be further examined. In this chapter, options for smart urban transportation infrastructure development and the technological means for achieving broader goals of sustainable communities and urban development are explored.
Resumo:
Many economic, social and environmental sustainability problems associated with typical urban transportation systems have revealed the importance of three domains of action: vehicle, infrastructure and user. These domains need to be carefully reconsidered in search of a sustainable urban development path. Although intelligent transportation systems have contributed substantially to enhancing efficiency, safety and comfort of travel, questions related to users’ behaviours and preferences, which stimulate considerable environmental effects, still needed to be further examined. In this chapter, options for smart urban transportation infrastructure development and the technological means for achieving broader goals of sustainable communities and urban development are explored.
Resumo:
Transport and logistics are essential to effective business. Very little is currently known about the impact of improved transport on micro-enterprises in developing economies and whether improvements in this area would assist the very poor. This paper looks at the obstacles of an inefficient transport facilitation system and the high costs incurred by 22 survival micro-entrepreneurs funded by the same local NGO and operating in diverse industry sectors in a peri-urban context in Mozambique. Six case studies are selected to illustrate the most common constraints they face. The perspectives of the micro-business owners are confronted with those of government officials and community leaders for two reasons: to identify any mismatch and to discuss possible solutions. Significant discrepancies are detected between government agenda and needs of the population, while community-based entrepreneurship (CBE) is discussed as a possible collective strategy in dealing with the problem.
Resumo:
The US National Institute of Standards and Technology (NIST) showed that, in 2004, owners and operations managers bore two thirds of the total industry cost burden from inadequate interoperability in construction projects from inception to operation, amounting to USD10.6 billion. Building Information Modelling (BIM) and similar tools were identified by Engineers Australia in 2005 as potential instruments to significantly reduce this sum, which in Australia could amount to total industry-wide cost burden of AUD12 billion. Public sector road authorities in Australia have a key responsibility in driving initiatives to reduce greenhouse gas emissions from the construction and operations of transport infrastructure. However, as previous research has shown the Environmental Impact Assessment process, typically used for project approvals and permitting based on project designs available at the consent stage, lacks Key Performance Indicators (KPIs) that include long-term impact factors and transfer of information throughout the project life cycle. In the building construction industry, BIM is widely used to model sustainability KPIs such as energy consumption, and integrated with facility management systems. This paper proposes that a similar use of BIM in early design phases of transport infrastructure could provide: (i) productivity gains through improved interoperability and documentation; (ii) the opportunity to carry out detailed cost-benefit analyses leading to significant operational cost savings; (iii) coordinated planning of street and highway lighting with other energy and environmental considerations; iv) measurable KPIs that include long-term impact factors which are transferable throughout the project life cycle; and (v) the opportunity for integrating design documentation with sustainability whole-of-life targets.
Resumo:
The type of contract model may have a significant influence on achieving project objectives, including environmental and climate change goals. This research investigates non-standard contract models impacting greenhouse gas emissions (GHG) in transport infrastructure construction in Australia. The research is based on the analysis of two case studies: an Early Contractor Involvement (ECI) contract and a Design and Construct (D&C) contract with GHG reduction requirements embedded in the contractor selection. Main findings support the use of ECIs for better integrating decisions made during the planning phase with the construction activities, and improve environmental outcomes while achieving financial and time savings. Key words: greenhouse gases reduction; road construction; contracting; ECI; D&C
Resumo:
To deliver tangible sustainability outcomes, the infrastructure sector of the construction industry needs to build capacities for the creation, application and management of ever increasing knowledge. This paper intends to establish the importance and key issues of promoting sustainability through knowledge management (KM). It presents a new conceptual framework for managing sustainability knowledge to raise the awareness and direct future research in the field of transport infrastructure, one of the fast growing sectors in Australia. A holistic KM approach is adopted in this research to consider the potential to “deliver the right information to the right person at the right time” in the context of sustainable development of infrastructure. A questionnaire survey among practitioners across the nation confirmed the necessity and identified priority issues of managing knowledge for sustainability. During infrastructure development, KM can help build much needed industry consensus, develop capacity, communicate decisions, and promote specific measures for the pursuit of sustainability. Six essential elements of the KM approach and their priority issues informed the establishment of a conceptual KM framework. The transport infrastructure sector has come to realise that development must not come at the expense of environmental and social objectives. In practice however, it is facing extensive challenges to deliver what has been promised in the sustainability agenda. This research demonstrates the importance of managing sustainability knowledge, integration of various stakeholders, facilitation of plans and actions and delivery of tangible benefits in real projects, as a positive step towards meeting these challenges.
Resumo:
Green infrastructure is considered as a strategic approach to address the ecological and social impacts of urban sprawl. The main elements of green infrastructure have been well established and include a series of multifunctional ecological systems, such as green urban space, green road infrastructure and the links between these systems. However, it should be noted that the elements of green road infrastructure have only been briefly mentioned in isolated life cycle stages, e.g. design, procurement, construction, maintenance and operation. The definition of green road infrastructure and the elements in green road infrastructure projects remain largely unknown. To explore the elements in green road infrastructure, a critical review was adopted. As the development of green road infrastructure projects is guided by rating systems, a comparison of three major green roads rating systems, including GreenroadsTM, EnvisionTM and Infrastructure Sustainability Rating Tool—IS, was conducted. The comparison reveals that green roads can be defined as road projects that have superior performance in economic, social and environmental sustainability. The sustainability features in green roads mainly include environmental sustainability, social sustainability, economic sustainability, quality, pavement technology and innovation. The results will contribute to an increased understanding of green roads and will be useful to improve the performance of road projects on these sustainability features.
Resumo:
A comprehensive study was conducted on potential systems of integrated building utilities and transport power solutions that can simultaneously contain rising electricity, hot water and personal transport costs for apartment residents. The research developed the Commuter Energy and Building Utilities System (CEBUS) and quantified the economic, social and environmental benefits of incorporating such a system in future apartment developments. A decision support tool was produced to assist the exploration of the CEBUS design variants. A set of implementation guidelines for CEBUS was also developed for the property development industry.
Resumo:
In the UK, public expenditure on transport infrastructure is nearly £6 billion for the past few years. Over £500 million per year were spent on bridge assessment and strengthening and reducing the backlog of road requiring maintenance. A further £200 million a year will be spent on keeping the safe operation of the network and efficiently through day to day maintenance, lighting and signing . The Department of Transport is planning to extend private sector experience in road management and operation by introducing Design, Build, Finance and Operate (DBFO) This paper investigates the different ways of financing road transport infrastructure including road pricing, private finance in transport infrastructure, the role of the private sector, Design, Build, Finance and Operate (DBFO) schemes, the benefits and problems of such schemes. The paper considers planning gain as a means of financing transport infrastructure with examples of developers to fund link road building and improvements to the local planning system
Resumo:
Gross domestic product (GDP) is generally considered as the most important index and comprehensive measure of the size of economy. This paper investigates empirically the relationship between transport infrastructure (focus on highways) and GDP growth based on a production function approach. The physical stocks of transport infrastructure were used instead of monetary data to measure public capital together with several other variables (labor and private capital) that were hypothesized to affect economic growth. Then we explore a number of subsequent studies that use panel data covering the period between 1992 and 2004. An investigation was done to compare developed countries and developing countries. Results indicate that physical units are positively and significantly related to economic growth. Furthermore there was an interesting finding that the output elasticity with respect to physical units for developed countries is higher than developing countries.