963 resultados para Gravity Equations
Resumo:
El documento intenta identificar factores que influyen y afectan el incremento de los niveles de exportaciones de una muestra de países en desarrollo, y porqué el desempeño de algunos países es mejor que otros. La muestra está compuesta por países que para 1991 mostraban niveles similares tanto de exportaciones como de ingresos. Usando una ecuación gravitacional, se realiza la evaluación basada en datos de COMTRADE, y se analizan con respecto a los países de origen y de destino de las exportaciones. A este análisis se incluyen variables económicas como ingreso, demográficas como población e idioma en común, geográficas como distancia, contigüidad, y acceso al mar. Así mismo, se introducen variables que capten el efecto de las políticas de los países como acuerdos comerciales, productividad y educación. El análisis de resultados se realiza tanto para la muestra de países, como para cada país individual; encontrando que la relación bilateral entre países de destino y de origen de exportaciones es determinante del nivel de exportaciones. Así mismo, esta relación está establecida por los niveles de ingresos y variables bilaterales.
Resumo:
Includes bibliography
Resumo:
This thesis is the result of my experience as a PhD student taking part in the Joint Doctoral Programme at the University of York and the University of Bologna. In my thesis I deal with topics that are of particular interest in Italy and in Great Britain. Chapter 2 focuses on the empirical test of the existence of the relationship between technological profiles and market structure claimed by Sutton’s theory (1991, 1998) in the specific economic framework of hospital care services provided by the Italian National Health Service (NHS). In order to test the empirical predictions by Sutton, we identify the relevant markets for hospital care services in Italy in terms of both product and geographic dimensions. In particular, the Elzinga and Hogarty (1978) approach has been applied to data on patients’ flows across Italian Provinces in order to derive the geographic dimension of each market. Our results provide evidence in favour of the empirical predictions of Sutton. Chapter 3 deals with the patient mobility in the Italian NHS. To analyse the determinants of patient mobility across Local Health Authorities, we estimate gravity equations in multiplicative form using a Poisson pseudo maximum likelihood method, as proposed by Santos-Silva and Tenreyro (2006). In particular, we focus on the scale effect played by the size of the pool of enrolees. In most of the cases our results are consistent with the predictions of the gravity model. Chapter 4 considers the effects of contractual and working conditions on selfassessed health and psychological well-being (derived from the General Health Questionnaire) using the British Household Panel Survey (BHPS). We consider two branches of the literature. One suggests that “atypical” contractual conditions have a significant impact on health while the other suggests that health is damaged by adverse working conditions. The main objective of our paper is to combine the two branches of the literature to assess the distinct effects of contractual and working conditions on health. The results suggest that both sets of conditions have some influence on health and psychological well-being of employees.
Resumo:
In this paper, we examined back-and-forth international transactions through tariff reduction by estimating modified gravity equations for finished goods and intermediate goods separately. Our main findings are as follows. Exports of finished machinery products are negatively associated with not only the importer's tariff rates on finished machinery products but also the exporter's tariff rates on machinery parts. Similarly, exports of machinery parts are negatively associated with not only the importer's tariff rates on machinery parts but also the exporter's tariff rates on finished machinery products. These results imply that tariff reduction in only one production process in an industry has the potential to drastically change the magnitude of trade in the whole industry.
Resumo:
Using the method of infinitesimal transformations, a 6-parameter family of exact solutions describing nonlinear sheared flows with a free surface are found. These solutions are a hybrid between the earlier self-propagating simple wave solutions of Freeman, and decaying solutions of Sachdev. Simple wave solutions are also derived via the method of infinitesimal transformations. Incomplete beta functions seem to characterize these (nonlinear) sheared flows in the absence of critical levels.
Resumo:
Steep orography can cause noisy solutions and instability in models of the atmosphere. A new technique for modelling flow over orography is introduced which guarantees curl free gradients on arbitrary grids, implying that the pressure gradient term is not a spurious source of vorticity. This mimetic property leads to better hydrostatic balance and better energy conservation on test cases using terrain following grids. Curl-free gradients are achieved by using the co-variant components of velocity over orography rather than the usual horizontal and vertical components. In addition, gravity and acoustic waves are treated implicitly without the need for mean and perturbation variables or a hydrostatic reference profile. This enables a straightforward description of the implicit treatment of gravity waves. Results are presented of a resting atmosphere over orography and the curl-free pressure gradient formulation is advantageous. Results of gravity waves over orography are insensitive to the placement of terrain-following layers. The model with implicit gravity waves is stable in strongly stratified conditions, with N∆t up to at least 10 (where N is the Brunt-V ̈ais ̈al ̈a frequency). A warm bubble rising over orography is simulated and the curl free pressure gradient formulation gives much more accurate results for this test case than a model without this mimetic property.
Resumo:
In the past, high order series expansion techniques have been used to study the nonlinear equations that govern the form of periodic Stokes waves moving steadily on the surface of an inviscid fluid. In the present study, two such series solutions are recomputed using exact arithmetic, eliminating any loss of accuracy due to accumulation of round-off error, allowing a much greater number of terms to be found with confidence. It is shown that higher order behaviour of series generated by the solution casts doubt over arguments that rely on estimating the series’ radius of convergence. Further, the exact nature of the series is used to shed light on the unusual nature of convergence of higher order Pade approximants near the highest wave. Finally, it is concluded that, provided exact values are used in the series, these Pade approximants prove very effective in successfully predicting three turning points in both the dispersion relation and the total energy.
Resumo:
The Airy stress function, although frequently employed in classical linear elasticity, does not receive similar usage for granular media problems. For plane strain quasi-static deformations of a cohesionless Coulomb–Mohr granular solid, a single nonlinear partial differential equation is formulated for the Airy stress function by combining the equilibrium equations with the yield condition. This has certain advantages from the usual approach, in which two stress invariants and a stress angle are introduced, and a system of two partial differential equations is needed to describe the flow. In the present study, the symmetry analysis of differential equations is utilised for our single partial differential equation, and by computing an optimal system of one-dimensional Lie algebras, a complete set of group-invariant solutions is derived. By this it is meant that any group-invariant solution of the governing partial differential equation (provided it can be derived via the classical symmetries method) may be obtained as a member of this set by a suitable group transformation. For general values of the parameters (angle of internal friction and gravity g) it is found there are three distinct classes of solutions which correspond to granular flows considered previously in the literature. For the two limiting cases of high angle of internal friction and zero gravity, the governing partial differential equation admit larger families of Lie point symmetries, and from these symmetries, further solutions are derived, many of which are new. Furthermore, the majority of these solutions are exact, which is rare for granular flow, especially in the case of gravity driven flows.
Resumo:
TRAUTMAN has postulated1 that the usual space−time singularity occurring in classical cosmological models and in the gravitational collapse of massive objects could be averted if intrinsic spin effects are incorporated into general relativity by adding torsion terms to the usual Einstein field equations, that is through the Einstein−Cartan theory. Invoking a primordial magnetic field for aligning all the individual nuclear spins he shows that his universe consisting of 1080 aligned neutrons collapses to a minimum radius of the order of 1 cm with a corresponding matter density of 1055 g cm-3.
Resumo:
TRAUTMAN has postulated1 that the usual space−time singularity occurring in classical cosmological models and in the gravitational collapse of massive objects could be averted if intrinsic spin effects are incorporated into general relativity by adding torsion terms to the usual Einstein field equations, that is through the Einstein−Cartan theory. Invoking a primordial magnetic field for aligning all the individual nuclear spins he shows that his universe consisting of 1080 aligned neutrons collapses to a minimum radius of the order of 1 cm with a corresponding matter density of 1055 g cm-3.
Resumo:
The special class of quasi-simple wave solutions is studied for the system of partial differential equations governing inviscid acoustic gravity waves. It is shown that these traveling wave solutions do not admit shocks. Periodic solutions are found to exist when there is no propagation in the vertical direction. The solutions for some particular cases are depicted graphically. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
This paper presents an analysis of solar radiation pressure induced coupled librations of gravity stabilized cylindrical spacecraft with a special reference to geostationary communication satellites. The Lagrangian approach is used to obtain the corresponding equations of motion. The solar induced torques are assumed to be free of librational angles and are represented by their Fourier expansion. The response and periodic solutions are obtained through linear and nonlinear analyses, using the method of harmonic balance in the latter case. The stability conditions are obtained using Routh-Hurwitz criteria. To establish the ranges of validity the analytic response is compared with the numerical solution. Finally, values of the system parameters are suggested to make the satellite behave as desired. Among these is a possible approach to subdue the solar induced roll resonance. It is felt that the approximate analysis presented here should significantly reduce the computational efforts involved in the design and stability analysis of the systems.
Resumo:
Hybrid frictional-kinetic equations are used to predict the velocity, grain temperature, and stress fields in hoppers. A suitable choice of dimensionless variables permits the pseudo-thermal energy balance to be decoupled from the momentum balance. These balances contain a small parameter, which is analogous to a reciprocal Reynolds number. Hence an approximate semi-analytical solution is constructed using perturbation methods. The energy balance is solved using the method of matched asymptotic expansions. The effect of heat conduction is confined to a very thin boundary layer near the exit, where it causes a marginal change in the temperature. Outside this layer, the temperature T increases rapidly as the radial coordinate r decreases. In particular, the conduction-free energy balance yields an asymptotic solution, valid for small values of r, of the form T proportional r-4. There is a corresponding increase in the kinetic stresses, which attain their maximum values at the hopper exit. The momentum balance is solved by a regular perturbation method. The contribution of the kinetic stresses is important only in a small region near the exit, where the frictional stresses tend to zero. Therefore, the discharge rate is only about 2.3% lower than the frictional value, for typical parameter values. As in the frictional case, the discharge rate for deep hoppers is found to be independent of the head of material.
Resumo:
Gravitational double layers, unlike their classical electromagnetic counterparts, are thought to be forbidden in gravity theories. It has been recently shown, however, that they are feasible in, for instance, gravity theories with a Lagrangian quadratic in the curvature. This is surprising with many potential consequences and the possibility of new physical behaviours. While a clear interpretation seems elusive, several lines of research are open. I present the field equations for double layers, the new physical quantities arising, and several explicit examples
Resumo:
Many types of oceanic physical phenomena have a wide range in both space and time. In general, simplified models, such as shallow water model, are used to describe these oceanic motions. The shallow water equations are widely applied in various oceanic and atmospheric extents. By using the two-layer shallow water equations, the stratification effects can be considered too. In this research, the sixth-order combined compact method is investigated and numerically implemented as a high-order method to solve the two-layer shallow water equations. The second-order centered, fourth-order compact and sixth-order super compact finite difference methods are also used to spatial differencing of the equations. The first part of the present work is devoted to accuracy assessment of the sixth-order super compact finite difference method (SCFDM) and the sixth-order combined compact finite difference method (CCFDM) for spatial differencing of the linearized two-layer shallow water equations on the Arakawa's A-E and Randall's Z numerical grids. Two general discrete dispersion relations on different numerical grids, for inertia-gravity and Rossby waves, are derived. These general relations can be used for evaluation of the performance of any desired numerical scheme. For both inertia-gravity and Rossby waves, minimum error generally occurs on Z grid using either the sixth-order SCFDM or CCFDM methods. For the Randall's Z grid, the sixth-order CCFDM exhibits a substantial improvement , for the frequency of the barotropic and baroclinic modes of the linear inertia-gravity waves of the two layer shallow water model, over the sixth-order SCFDM. For the Rossby waves, the sixth-order SCFDM shows improvement, for the barotropic and baroclinic modes, over the sixth-order CCFDM method except on Arakawa's C grid. In the second part of the present work, the sixth-order CCFDM method is used to solve the one-layer and two-layer shallow water equations in their nonlinear form. In one-layer model with periodic boundaries, the performance of the methods for mass conservation is compared. The results show high accuracy of the sixth-order CCFDM method to simulate a complex flow field. Furthermore, to evaluate the performance of the method in a non-periodic domain the sixth-order CCFDM is applied to spatial differencing of vorticity-divergence-mass representation of one-layer shallow water equations to solve a wind-driven current problem with no-slip boundary conditions. The results show good agreement with published works. Finally, the performance of different schemes for spatial differencing of two-layer shallow water equations on Z grid with periodic boundaries is investigated. Results illustrate the high accuracy of combined compact method.