909 resultados para Gram-positive pathogens


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the susceptibility of the gram-positive mastitis pathogens S. aureus, Str. uberis, Str. dysgalactiae, E. faecalis and L. garviae to antibiotics that are of epidemiological interest or are critically important for mastitis therapy and human medicine. Penicillin resistance was found to be most frequent in S. aureus, and nearly 5 % of the Str. uberis strains displayed a decreased susceptibility to this antibiotic. Resistance to aminoglycosides and macrolides was also detected in the strains tested. The detection of methicillin-resistant S. aureus (MRSA) and of a ciprofloxacin-resistant Str. dysgalactiae isolate corroborated the emergence of mastitis pathogens resistant to critically important antibiotics and underscores the importance of susceptibility testing prior to antibiotic therapy. The monitoring of antibiotic susceptibility patterns and antibiogram analyses are strongly recommended for targeted antimicrobial treatment and to avoid the unnecessary use of the latest generation of antibiotics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study examined the mechanism by which bacterial cell walls from two gram-positive meningeal pathogens, Streptococcus pneumoniae and the group B streptococcus, induced neuronal injury in primary cultures of rat brain cells. Cell walls from both organisms produced cellular injury to similar degrees in pure astrocyte cultures but not in pure neuronal cultures. Cell walls also induced nitric oxide production in cultures of astrocytes or microglia. When neurons were cultured together with astrocytes or microglia, the cell walls of both organisms became toxic to neurons. L-NAME, a nitric oxide synthase inhibitor, protected neurons from cell wall-induced toxicity in mixed cultures with glia, as did dexamethasone. In contrast, an excitatory amino acid antagonist (MK801) had no effect. Low concentrations of cell walls from either gram-positive pathogen added together with the excitatory amino acid glutamate resulted in synergistic neurotoxicity that was inhibited by L-NAME. The induction of nitric oxide production and neurotoxicity by cell walls was independent of the presence of serum, whereas endotoxin exhibited these effects only in the presence of serum. We conclude that gram-positive cell walls can cause toxicity in neurons by inducing the production of nitric oxide in astrocytes and microglia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current study was undertaken to enumerate Gram-positive bacteria in fresh sub-tropical marine fish and determine the effect of ambient storage (25°C) on the Gram-positive bacterial count. Total and Gram-positive bacteria were enumerated in the muscles, gills and gut of fresh and stored Pseudocaranx dentex, Pagrus auratus and Mugil cephalus on tryptone soya agar (TSA) and TSA with 0.25% phenylethyl alcohol (PEA), respectively. Initial studies indicated that PEA significantly reduced total aerobic bacterial count (TABC) whereas control Gram-positive bacteria were not affected by 0.25% PEA. TABC significantly increased in all fish body parts, whereas Gram-positive aerobic bacterial count (GABC) significantly increased only in the muscles and gills during ambient storage for 15 h. The TABC of the fish species increased from 4.00, 6.13 and 4.58 log cfu g-1, respectively in the muscles, gills, and gut to 6.31, 7.31 and 7.23 log cfu g-1 by the end of storage. GABC increased from 2.00, 3.52 and 2.20 log cfu g-1 to 4.70, 5.85 and 3.36 log cfu g-1. Within each species, TABC were significantly higher in the gills compared to that of muscles and gut; however, no significant differences were found in GABC between muscles and gills. This study demonstrated the potential importance of Gram-positive bacteria in sub-tropical marine fish and their spoilage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study identified Gram-positive bacteria in three sub-tropical marine fish species: Pseudocaranx dentex (silver trevally), Pagrus auratus (snapper) and Mugil cephalus (sea mullet). It further elucidated the role played by fish habitat, fish body part and ambient storage on the composition of the Gram-positive bacteria. A total of 266 isolates of Gram-positive bacteria were identified by conventional biochemical methods, VITEK, PCR using genus- and species-specific primers and/or 16S rRNA gene sequencing. The isolates were found to fall into 13 genera and 30 species. In fresh fish, Staphylococcus epidermidis and Micrococcus luteus were the most frequent isolates. After ambient storage, S. epidermidis, S. xylosus and Bacillus megaterium were no longer present whereas S. warned, B. sphaericus, Brevibacillus borstelensis, Enterococcus faecium and Streptococcus uberis increased in frequency. Micrococcus luteus and S. warned were the most prevalent isolates from P. dentex, while E. faecium and Strep. uberis were the most frequent isolates from P. auratus and M. cephalus. With respect to different parts of the fish body. E. faecium, Strep. uberis and B. sphaericus were the most frequent isolates from the muscles, E. faecium, Strep. uberis from the gills and M. luteus from the gut. This study showed a diversity of Gram-positive bacteria in sub-tropical marine fish; however, their abundance was affected by fish habitat, fish body part and ambient storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the resistance of bacteria to conventional antibiotics has become an increasing problem, new antimicrobial drugs are urgently needed. One possible source of new antibacterial agents is a group of cationic antimicrobial peptides (CAMPs) produced by practically all living organisms. These peptides are typically small, amphipathic and positively charged and contain well defined a-helical or b-sheet secondary structures. The main antibacterial action mechanism of CAMPs is considered to be disruption of the cell membrane, but other targets of CAMPs also exist. Some bacterial species have evolved defence mechanisms against the harmful effects of CAMPs. One of the most effective defence mechanisms is reduction of the net negative charge of bacterial cell surfaces. Global analysis of gene expression of two Gram-positive bacteria, Bacillus subtilis and Staphylococcus aureus, was used to further study the stress responses induced by different types of CAMPs. B. subtilis cells were treated with sublethal concentrations of a-helical peptide LL-37, b-sheet peptide protegrin 1 or synthetic analogue poly-L-lysine, and the changes in gene expression were studied using DNA macroarrays. In the case of S. aureus, three different a-helical peptides were selected for the transcriptome analyses: temporin L, ovispirin-1 and dermaseptin K4-S4(1-16). Transcriptional changes caused by peptide stress were examined using oligo DNA microarrays. The transcriptome analysis revealed two main cell signalling mechanisms mediating CAMP stress responses in Gram-positive bacteria: extracytoplasmic function (ECF)sigma factors and two-component systems (TCSs). In B. subtilis, ECF sigma factors sigW and sigM as well as TCS LiaRS responded to the cell membrane disruption caused by CAMPs. In S. aureus, CAMPs caused a similar stress response to antibiotics interfering in cell wall synthesis, and TCS VraSR was strongly activated. All of these transcriptional regulators are known to respond to several compounds other than CAMPs interfering with cell envelope integrity, suggesting that they sense cell envelope stress in general. Among the most strongly induced genes were yxdLM (in B. subtilis) and vraDE (in S. aureus) encoding homologous ABC transporters. Transcription of yxdLM and vraDE operons is controlled by TCSs YxdJK and ApsRS, respectively. These TCSs seemed to be responsible for the direct recognition of CAMPs. The yxdLM operon was specifically induced by LL-37, but its role in CAMP resistance remained unclear. VraDE was proven to be a bacitracin transporter. We also showed that the net positive charge of the cell wall affects the signalrecognition of different TCSs responding to cell envelope stress. Inactivation of the Dlt system responsible for the D-alanylation of teichoic acids had a strong and differential effect on the activity of the studied TCSs, depending on their functional role in cells and the stimuli they sense.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence of multidrug resistant bacteria, especially biofilm-associated Staphylococci, urgently requires novel antimicrobial agents. The antibacterial activity of ultrasmall gold nanoparticles (AuNPs) is tested against two gram positive: S. aureus and S. epidermidis and two gram negative: Escherichia coli and Pseudomonas aeruginosa strains. Ultrasmall AuNPs with core diameters of 0.8 and 1.4 nm and a triphenylphosphine-monosulfonate shell (Au0.8MS and Au1.4MS) both have minimum inhibitory concentration (MIC) and minimum bactericidal concentration of 25 x 10(-6)m Au]. Disc agar diffusion test demonstrates greater bactericidal activity of the Au0.8MS nanoparticles over Au1.4MS. In contrast, thiol-stabilized AuNPs with a diameter of 1.9 nm (AuroVist) cause no significant toxicity in any of the bacterial strains. Ultrasmall AuNPs cause a near 5 log bacterial growth reduction in the first 5 h of exposure, and incomplete recovery after 21 h. Bacteria show marked membrane blebbing and lysis in biofilm-associated bacteria treated with ultrasmall AuNP. Importantly, a twofold MIC dosage of Au0.8MS and Au1.4MS each cause around 80%-90% reduction in the viability of Staphylococci enveloped in biofilms. Altogether, this study demonstrates potential therapeutic activity of ultrasmall AuNPs as an effective treatment option against staphylococcal infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phage-mediated transfer of microbial genetic elements plays a crucial role in bacterial life style and evolution. In this study, we identify the RinA family of phage-encoded proteins as activators required for transcription of the late operon in a large group of temperate staphylococcal phages. RinA binds to a tightly regulated promoter region, situated upstream of the terS gene, that controls expression of the morphogenetic and lysis modules of the phage, activating their transcription. As expected, rinA deletion eliminated formation of functional phage particles and significantly decreased the transfer of phage and pathogenicity island encoded virulence factors. A genetic analysis of the late promoter region showed that a fragment of 272 bp contains both the promoter and the region necessary for activation by RinA. In addition, we demonstrated that RinA is the only phage-encoded protein required for the activation of this promoter region. This region was shown to be divergent among different phages. Consequently, phages with divergent promoter regions carried allelic variants of the RinA protein, which specifically recognize its own promoter sequence. Finally, most Gram-postive bacteria carry bacteriophages encoding RinA homologue proteins. Characterization of several of these proteins demonstrated that control by RinA of the phage-mediated packaging and transfer of virulence factor is a conserved mechanism regulating horizontal gene transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The threat of antimicrobial resistance has placed increasing emphasis on the development of innovative approaches to eradicate multidrug-resistant pathogens. Biofilm-forming microorganisms, for example, Staphylococcus epidermidis and Staphylococcus aureus, are responsible for increased incidence of biomaterial infection, extended hospital stays and patient morbidity and mortality. This paper highlights the potential of ultrashort tetra-peptide conjugated to hydrophobic cinnamic acid derivatives. These peptidomimetic molecules demonstrate selective and highly potent activity against resistant biofilm forms of Gram-positive medical device-related pathogens. 3-(4-Hydroxyphenyl)propionic)-Orn-Orn-Trp-Trp-NH2 displays particular promise with minimum biofilm eradication concentration (MBEC) values of 125 µg/ml against methicillin sensitive (ATCC 29213) and resistant (ATCC 43300) S. aureus and activity shown against biofilm forms of Escherichia coli (MBEC: 1000 µg/ml). Kill kinetics confirms complete eradication of established 24-h biofilms at MBEC with 6-h exposure. Reduced cell cytotoxicity, relative to Gram-positive pathogens, was proven via tissue culture (HaCaT) and haemolysis assays (equine erythrocytes).

Existing in nature as part of the immune response, antimicrobial peptides display great promise for exploitation by the pharmaceutical industry in order to increase the library of available therapeutic molecules. Ultrashort variants are particularly promising for translation as clinical therapeutics as they are more cost-effective, easier to synthesise and can be tailored to specific functional requirements based on the primary sequence allowing factors such as spectrum of activity to be varied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenotypic and phylogenetic studies were performed on two strains of an unidentified Gram-positive, fastidious, non-spore-forming, coccus-shaped bacterium recovered from human blood. The organism was catalase-negative and grew under strictly anaerobic conditions and in the presence of 2 and 6% O-2. Comparative 16S rRNA gene sequencing demonstrated that the unidentified bacterium was, phylogenetically, far removed from peptostreptococci and related Gram-positive coccus-shaped organisms, but exhibited a phylogenetic association with Clostridium rRNA cluster III [as defined by Collins et al, Int J Syst Bacteriol 44 (1994), 812-826]. Sequence divergence values of 15% or more were observed between the unidentified bacterium and all other recognized species within this and related rRINIA clostridial clusters. Treeing analysis showed that the unknown bacterium formed a deep line branching at the periphery of rRNA cluster III and represents a hitherto unknown genus within this supra-generic grouping. On the basis of both phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium from blood be classified in a new genus, Fastidiosipila gen. nov., as Fastidiosipila sanguinis sp, nov. The type strain of Fastidiosipila sanguinis is CCUG 47711(T) (= CIP 108292(T)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel Gram-positive, aerobic, catalase-negative, coccus-shaped organism originating from tobacco was characterized using phenotypic and molecular taxonomic methods. The organism contained a cell wall murein based on L-lysine (variation A4 alpha, type L-lysine-L-glutamic acid), synthesized long-chain cellular fatty acids of the straight-chain saturated and monounsaturated types (with C(16:1)omega 9, C-16:0 and C(18:1)omega 9 predominating) and possessed a DNA G+C content of 46 mol%. Based on morphological, biochemical and chemical characteristics, the coccus-shaped organism did not conform to any presently recognized taxon. Comparative 16S rRNA gene sequencing studies confirmed the distinctiveness of the unknown coccus, with the bacterium displaying sequence divergence values of greater than 7% with other recognized Gram-positive taxa. Treeing analysis reinforced its distinctiveness, with the unidentified organism forming a relatively long subline branching at the periphery of an rRNA gene sequence cluster which encompasses the genera Alloiococcus, Allolustis, Alkalibacterium, Atopostipes, Dolosigranulum and Marinilactibacillus. Based on phenotypic and molecular phylogenetic evidence, it is proposed that the unknown organism from tobacco be classified as a new genus and species, Atopococcus tabaci gen. nov., sp. nov. The type strain of Atopococcus tabaci is CCUG 48253(T) (= CIP 108502(T)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An unknown Gram-positive, catalase-negative, facultatively anaerobic, non-spore-forming, rod-shaped bacterium originating from semen of a pig was characterized using phenotypic, molecular chemical and molecular phylogenetic methods. Chemical studies revealed the presence of a directly cross-linked cell wall murein based on L-lysine and a DNA G + C content of 39 mol%. Comparative 16S rRNA gene sequencing showed that the unidentified rod-shaped organism formed a hitherto unknown subline related, albeit loosely, to Alkalibacterium olivapovliticus, Alloiococcus otitis, Dolosigranulum pigrum and related organisms, in the low-G + C-content Gram-positive bacteria. However, sequence divergence values of > 11 % from these recognized taxa. clearly indicated that the novel bacterium represents a separate genus. Based on phenotypic and phylogenetic considerations, it is proposed that the unknown bacterium from pig semen be classified as a new genus and species, Allofustis seminis gen. nov., sp. nov. The type strain is strain 01-570-1(T) (=CCUG 45438(T)=CIP 107425(T)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A synthetic version of the metal-regulated gene A (mrgA) promoter from Bacillus subtilis, which in this Gram-positive bacterium is negatively regulated by manganese, iron, cobalt, or copper turned out to promote high level of basal gene expression that is further enhanced by Co(II), Cd(II), Mn(II), Zn(II), Cu(II), or Ni(II), when cloned in the Gram-negative bacterium Cupriavidus metallidurans. Promoter activity was monitored by expression of the reporter gene coding for the enhanced green fluorescent protein (EGFP), and cellular intensity fluorescence was quantified by flow cytometry. Expression levels in C. metallidurans driven by the heterologous promoter, here called pan, ranged from 20- to 53-fold the expression level driven by the Escherichia coli lac promoter (which is constitutively expressed in C. metallidurans), whether in the absence or presence of metal ions, respectively. The pan promoter did also function in E. coli in a constitutive pattern, regardless of the presence of Mn(II) or Fe(II). In conclusion, the pan promoter proved to be a powerful tool to express heterologous proteins in Gram-negative bacteria, especially in C. metallidurans grown upon high levels of toxic metals, with potential applications in bioremediation. Biotechnol. Bioeng. 2010; 107: 469-477. (C) 2010 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genome sequence of Leifsonia xyli subsp. xyli, which causes ratoon stunting disease and affects sugarcane worldwide, was determined. The single circular chromosome of Leifsonia xyli subsp. xyli CTCB07 was 2.6 Mb in length with a GC content of 68% and 2,044 predicted open reading frames. The analysis also revealed 307 predicted pseudogenes, which is more than any bacterial plant pathogen sequenced to date. Many of these pseudogenes, if functional, would likely be involved in the degradation of plant heteropolysaccharides, uptake of free sugars, and synthesis of amino acids. Although L. xyli subsp. xyli has only been identified colonizing the xylem vessels of sugarcane, the numbers of predicted regulatory genes and sugar transporters are similar to those in free-living organisms. Some of the predicted pathogenicity genes appear to have been acquired by lateral transfer and include genes for cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase. The presence of the latter may contribute to stunting, since it is likely involved in the synthesis of abscisic acid, a hormone that arrests growth. Our findings are consistent with the nutritionally fastidious behavior exhibited by L. xyli subsp. xyli and suggest an ongoing adaptation to the restricted ecological niche it inhabits.