994 resultados para Glucose ingestion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plasma glucose excursion may influence the metabolic responses after oral glucose ingestion. Although previous studies addressed the effects of hyperglycemia in conditions of hyperinsulinemia, it has not been evaluated whether the route of glucose administration (oral vs. intravenous) plays a role. Our aim was to determine the effects of moderately controlled hyperglycemia on glucose metabolism before and after oral glucose ingestion. Eight normal men underwent two oral glucose clamps at 6 and 10 mmol/l plasma glucose. Glucose turnover and cycling rates were measured by infusion of [2H7]glucose. The oral glucose load was labeled by D-[6,6-2H2]glucose to monitor exogenous glucose appearance, and respiratory exchanges were measured by indirect calorimetry. Sixty percent of the oral glucose load appeared in the systemic circulation during both the 6 and 10 mmol/l plasma glucose tests, although less endogenous glucose appeared during the 10 mmol/l tests before glucose ingestion (P < 0.05). This inhibitory effect of hyperglycemia was not detectable after oral glucose ingestion, although glucose utilization was increased (+28%, P < 0.05) due to increased nonoxidative glucose disposal [10 vs. 6 mmol/l: +20%, not significant (NS) before oral glucose ingestion; +40%, P < 0.05 after oral glucose ingestion]. Glucose cycling rates were increased by hyperglycemia (+13% before oral glucose ingestion, P < 0.001; +31% after oral glucose ingestion, P < 0.05) and oral glucose ingestion during both the 6 (+10%, P < 0.05) and 10 mmol/l (+26%, P < 0.005) tests. A moderate hyperglycemia inhibits endogenous glucose production and contributes to glucose tolerance by enhancing nonoxidative glucose disposal. Hyperglycemia and oral glucose ingestion both stimulate glucose cycling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ingestion of carbohydrate during exercise may blunt the stimulation of fat oxidative pathways by raising plasma insulin and glucose concentrations and lowering plasma free fatty acid (FFA) levels, thereby causing a marked shift in substrate oxidation. We investigated the effects of a single 2-h bout of moderate-intensity exercise on the expression of key genes involved in fat and carbohydrate metabolism with or without glucose ingestion in seven healthy untrained men (22.7 ± 0.6 yr; body mass index: 23.8 ± 1.0 kg/m2; maximal O2 consumption: 3.85 ± 0.21 l/min). Plasma FFA concentration increased during exercise (P < 0.01) in the fasted state but remained unchanged after glucose ingestion, whereas fat oxidation (indirect calorimetry) was higher in the fasted state vs. glucose feeding (P < 0.05). Except for a significant decrease in the expression of pyruvate dehydrogenase kinase-4 (P < 0.05), glucose ingestion during exercise produced minimal effects on the expression of genes involved in carbohydrate utilization. However, glucose ingestion resulted in a decrease in the expression of genes involved in fatty acid transport and oxidation (CD36, carnitine palmitoyltransferase-1, uncoupling protein 3, and 5'-AMP-activated protein kinase-α2; P < 0.05). In conclusion, glucose ingestion during exercise decreases the expression of genes involved in lipid metabolism rather than increasing genes involved in carbohydrate metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compared to males, females oxidize proportionately more fat and less carbohydrate during endurance exercise performed in the fasted state. This study was designed to test the hypothesis that there may also be gender differences in exogenous carbohydrate (CHOexo) oxidation during exercise. Healthy, young males (n = 7) and females (n = 7) each completed 2 exercise trials (90 min cycle ergometry at 60% VO[sub2peak]), 1 week apart. Females were eumenorrheic and were tested in the midfollicular phase of their menstrual cycle. Subjects drank intermittently either 8% CHOexo (1 g glucose ⋅ kg ⋅ h[sup-1]) enriched with U-13C glucose or an artificially sweetened placebo during the trial. Whole-body substrate oxidation was determined from PER, urinary urea excretion, and the ratio of 13C:12C in expired gas during the final 60 min of exercise. During the placebo trial, fat oxidation was higher in females than in males (0.42 ± 0.07 vs. 0.32 ± 0.09 g ⋅ min[sup-1] . kg LBM[sup-1] x 10[sup-2]) at 30 min of exercise (p < .05). When averaged over the final 60 min of exercise, the relative proportions of fat, total carbohydrate, and protein were similar between groups. During CHOexo ingestion, both the ratio of 13C: 12C in expired gas (p < .05) and the proportion of energy derived from CHOexo relative to LBM (p < .05) were higher in females compared to males at 75- and 90-min exercise. When averaged over the final 60 min of exercise, the percentage of CHOexo to the total energy contribution tended to be higher in females (14.3 + 1.2%) than in males (11.2 ± 1.2%; p = .09). The reduction in endogenous CHO oxidation with CHOexo intake was also greater in females (12.9 ± 3.1%) than in males (5.1 ± 2.0%; p = .05). Compared to males, females may oxidize a greater relative proportion of CHOexo during endurance exercise which, in turn, may spare more endogenous fuel. Based on these observations, ingested carbohydrate may be a particularly beneficial source of fuel during endurance exercise for females.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obese Black women are at increased risk for development of gestational diabetes mellitus and have worse perinatal outcomes than do obese women of other ethnicities. Since hsp72 has been associated with the regulation of obesity-induced insulin resistance, we evaluated associations between glucose ingestion, hsp72 release and insulin production in Black pregnant women. Specifically, the effect of a 50-g glucose challenge test (GCT) on heat shock protein and insulin levels in the circulation 1 h later was evaluated. Hsp27 and hsp60 levels remained unchanged. In contrast, serum levels of hsp72 markedly increased after glucose ingestion (p = 0.0054). Further analysis revealed that this increase was limited to women who were not obese (body mass index <30). Insulin levels pre-GCT were positively correlated with body mass index (p = 0.0189). Median insulin concentrations also increased post GCT in non-obese women but remained almost unchanged in obese women. Post-GCT serum hsp72 concentrations were inversely correlated with post GCT insulin concentrations (p = 0.0111). These observations suggest that glucose intake during gestation in Black women rapidly leads to an elevation in circulating hsp72 only in non-obese Black women. The release of hsp72 may regulate the extent of insulin production in response to a glucose challenge and, thereby, protect the mother and/or fetus from development of hyperglycemia, hyperinsulinemia, and/or immune system alterations. © 2013 Cell Stress Society International.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin- and contraction-stimulated increases in glucose uptake into skeletal
muscle occur in part as a result of the translocation of glucose transporter 4
(GLUT4) from intracellular stores to the plasma membrane (PM). This study
aimed to use immunofluorescence microscopy in human skeletal muscle to
quantify GLUT4 redistribution from intracellular stores to the PM in response
to glucose feeding and exercise. Percutaneous muscle biopsy samples were
taken from the m. vastus lateralis of ten insulin-sensitive men in the basal
state and following 30 min of cycling exercise (65% VO2 max). Muscle biopsy
samples were also taken from a second cohort of ten age-, BMI- and VO2 maxmatched insulin-sensitive men in the basal state and 30 and 60 min following
glucose feeding (75 g glucose). GLUT4 and dystrophin colocalization, measured
using the Pearson’s correlation coefficient, was increased following
30 min of cycling exercise (baseline r = 0.47 0.01; post exercise
r = 0.58 0.02; P < 0.001) and 30 min after glucose ingestion (baseline
r = 0.42 0.02; 30 min r = 0.46 0.02; P < 0.05). Large and small GLUT4
clusters were partially depleted following 30 min cycling exercise, but not
30 min after glucose feeding. This study has, for the first time, used immunofluorescence microscopy in human skeletal muscle to quantify increases in
GLUT4 and dystrophin colocalization and depletion of GLUT4 from large
and smaller clusters as evidence of net GLUT4 translocation to the PM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins secreted in response to oral glucose ingestion by intestinal L and K cells, respectively. The molecular mechanisms responsible for intestinal cell glucose sensing are unknown but could be related to those described for beta-cells, brain and hepatoportal sensors. We determined the role of GLUT2, GLP-1 or GIP receptors in glucose-induced incretins secretion, in the corresponding knockout mice. GLP-1 secretion was reduced in all mutant mice, while GIP secretion did not require GLUT2. Intestinal GLP-1 content was reduced only in GIP and GLUT2 receptors knockout mice suggesting that this impairment could contribute to the phenotype. Intestinal GIP content was similar in all mice studied. Furthermore, the impaired incretins secretion was associated with a reduced glucose-stimulated insulin secretion and an impaired glucose tolerance in all mice. In conclusion, both incretins secretion depends on mechanisms involving their own receptors and GLP-1 further requires GLUT2.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Les principaux substrats oxydés à l’exercice, soit les glucides, les lipides et les pro- téines ne contribuent pas tous au même niveau à la fourniture d’énergie lors de l’effort prolongé. De plus, le glucose peut provenir de différentes sources endogènes (muscle, foie) et exogènes. Plusieurs facteurs peuvent influencer leur contribution respective incluant : la masse musculaire impliquée et l’entraînement préalable, le sexe, l’état nutritionnel et les conditions environnementales. L’utilisation d’isotopes stables, tels que le carbone 13 (13C), combinée à la calorimétrie indirecte respiratoire corrigée pour l’excrétion d’urée dans l’urine et la sueur, permet de différencier les substrats endogènes et exogènes et d’évaluer la contribution de leur oxydation à la fourniture d’énergie. Ces méthodes d’investigation permettant d’apprécier la sélection des substrats lors de l’exercice prolongé avec ingestion de glucose ont permis d’effectuer les comparaisons qui ont fait l’objet des trois études de cette thèse. Dans la première étude, la sélection des substrats au cours d’un effort prolongé effectué avec les membres inférieurs ou les membres supérieurs a été comparée avec et sans ingestion de glucose. Une différence modeste fut observée entre la sélection des substrats selon le mode d’exercice avec l’ingestion d’eau, celle-ci favorisant légèrement l’oxydation des glucides lors de l’effort avec les membres supérieurs. La quantité de glucose exogène oxydée était plus faible lors de l’exercice avec les membres supérieurs qu’avec les membres supérieurs, mais sa contribution plus importante, conséquence d’une dépense énergétique plus faible. Dans la deuxième étude, on a comparé la sélection des substrats chez des sujets mas- culins et féminins et les effets d’une alimentation enrichie en glucides ou de l’ingestion de glucose, au cours d’un exercice prolongé d’une durée de deux heures. On reconnaît généralement que, pour une même puissance relative, les femmes utilisent moins de glucides et davantage de lipides que les hommes. Les effets séparés d’une alimentation riche en glucides ou de l’ingestion de glucose pendant l’exercice sur la sélection des substrats furent pourtant similaires chez les deux sexes. L’effet combiné des deux procédures de supplémentation est toutefois plus important chez la femme que chez l’homme, soutenant l’hypothèse qu’un léger déficit en glucides soit présent chez les femmes. Dans la troisième étude, l’oxydation des substrats et particulièrement celle d’amidon exogène au cours d’une marche prolongée à une faible puissance de travail a été décrite. Les individus qui pratiquent des activités physiques prolongées à des intensités faibles (< 40 %VO2max) sont encouragés à ingérer des glucides et de l’eau pendant l’effort, mais la contribution de leur oxydation à la fourniture d’énergie est relativement peu connue. Nous avons montré que, contrairement aux observations précédemment effectuées à jeun sans ingestion de glucides pendant l’effort, les glucides (incluant de source exogène) peuvent fournir une très grande partie de l’énergie lorsqu’ils sont ingérés à des intervalles réguliers au cours de l’exercice prolongé. Dans l’ensemble, les résultats des études expérimentales présentées dans cette thèse montrent que les glucides ingérés peuvent fournir une grande proportion de l’énergie pendant l’exercice prolongé. Toutefois, le mode d’exercice, le sexe et la puissance de travail mènent à des variations qui sont en grande partie liées à une dépense énergétique variable selon les conditions et les groupes d’individus ayant des caractéristiques différentes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background and aims: When a high fat oral load is followed several hours later by further ingestion of nutrients, there is an early postprandial peak in plasma triacylglycerol (TG). The aim of this study was to investigate the location and release of lipid from within the gastrointestinal tract. Methods: Ten healthy patients undergoing oesopho-gastro-duodenoscopy (OGD) were recruited. At t=0, all patients consumed a 50 g fat emulsion and at t=5 hours they consumed either water or a 38 g glucose solution. OGD was performed at t=6 hours and jejunal biopsy samples were evaluated for fat storage. A subgroup of five subjects then underwent a parallel metabolic study in which postprandial lipid and hormone measurements were taken during an identical two meal protocol. Results: Following oral fat at t=0, samples from patients that had subsequently ingested glucose exhibited significantly less staining for lipid within the mucosa and submucosa of the jejunum than was evident in patients that had consumed only water (p=0.028). There was also less lipid storage within the cytoplasm of enterocytes (p=0.005) following oral glucose. During the metabolic study, oral glucose consumed five hours after oral fat resulted in a postprandial peak in plasma TG, chylomicron-TG, and apolipoprotein B48 concentration compared with oral water. Conclusion: After a fat load, fat is retained within the jejunal tissue and released into plasma following glucose ingestion, resulting in a peak in chylomicron-TG which has been implicated in the pathogenesis of atherosclerosis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several studies have demonstrated that oral glucose tolerance is impaired in the immediate postexercise period. A double-tracer technique was used to examine glucose kinetics during a 2-h oral glucose (75 g) tolerance test (OGTT) 30 min after exercise (Ex, 55 min at 71 ± 2% of peak O2 uptake) and 24 h after exercise (Rest) in endurance-trained men. The area under the plasma glucose curve was 71% greater in Ex than in Rest (P = 0.01). The higher glucose response occurred even though whole body rate of glucose disappearance was 24% higher after exercise (P = 0.04, main effect). Whole body rate of glucose appearance was 25% higher after exercise (P = 0.03, main effect). There were no differences in total (2 h) endogenous glucose appearance (RaE) or the magnitude of suppression of RaE, although RaE was higher from 15 to 30 min during the OGTT in Ex. However, the cumulative appearance of oral glucose was 30% higher in Ex (P = 0.03, main effect). There were no differences in glucose clearance rate or plasma insulin responses between the two conditions. These results suggest that adaptations in splanchnic tissues by prior exercise facilitate greater glucose output from the splanchnic region after glucose ingestion, resulting in a greater glycemic response and, consequently, a greater rate of whole body glucose uptake.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Skeletal muscle possesses a high degree of plasticity and can adapt to both the physical and metabolic challenges that it faces. An acute bout of exercise is sufficient to induce the expression of a variety of metabolic genes, such as GLUT4, pyruvate dehydrogenase kinase 4 (PDK-4), uncoupling protein-3 (UCP3), and peroxisome proliferator-activated receptor-? coactivator 1 (PGC-1). Reducing muscle glycogen levels before exercise potentiates the effect of exercise on many genes. Similarly, altered substrate availability induces transcription of many of these genes. The purpose of this study was to determine whether glucose ingestion attenuates the exercise-induced increase in a variety of exercise-responsive genes. Six male subjects (28 ± 7 yr; 83 ± 3 kg; peak pulmonary oxygen uptake = 46 ± 6 ml·kg–1·min–1) performed 60 min of cycling at 74 ± 2% of peak pulmonary oxygen uptake on two separate occasions. On one occasion, subjects ingested a 6% carbohydrate drink. On the other occasion, subjects ingested an equal volume of a sweet placebo. Muscle samples were obtained from vastus lateralis at rest, immediately after exercise, and 3 h after exercise. PDK-4, UCP3, PGC-1, and GLUT4 mRNA levels were measured on these samples using real-time RT-PCR. Glucose ingestion attenuated (P < 0.05) the exercise-induced increase in PDK-4 and UCP3 mRNA. A similar trend (P = 0.09) was observed for GLUT4 mRNA. In contrast, PGC-1 mRNA increased following exercise to the same extent in both conditions. These data suggest that glucose availability can modulate the effect of exercise on metabolic gene expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The improved prognosis of early preterm birth has created a generation of surviving very low birth weight (< 1500 g, VLBW) infants whose health risks in adulthood are poorly known. Of every 1000 live-born infants in Finland, about 8 are born at VLBW. Variation in birth weight, even within the normal range, relates to considerable variation in the risk for several common adult disorders, including cardiovascular disease and osteoporosis. Small preterm infants frequently exhibit severe postnatal or prenatal growth retardation, or both. Much reason for concern thus exists, regarding adverse health effects in surviving small preterm infants later lives. We studied young adults, aiming at exploring whether VLBW birth and postnatal events after such a birth are associated with higher levels of risk factors for cardiovascular disease or osteoporosis. Subjects and Methods: A follow-up study for VLBW infants began in 1978; by the end of 1985, 335 VLBW survivors at Helsinki University Central Hospital participated in the follow-up. Their gestational ages ranged from 24 to 35 weeks, mean 29.2 and standard deviation 2.2 weeks. In 2004, we invited for a clinic visit 255 subjects, aged 18 to 27, who still lived in the greater Helsinki area. From the same birth hospitals, we also invited 314 term-born controls of similar age and sex. These two study groups underwent measurements of body size and composition, function of brachial arterial endothelium (flow-mediated dilatation, FMD) and carotid artery intima-media thickness (cIMT) by ultrasound. In addition, we measured plasma lipid concentrations, ambulatory blood pressure, fasting insulin, glucose tolerance and, by dual-energy x-ray densitometry, bone-mineral density. Results: 172 control and 166 VLBW participants underwent lipid measurements and a glucose tolerance test. VLBW adults fasting insulin (adjusted for body mass index) was 12.6% (95% confidence interval, 0.8 to 25.8) higher than that of the controls. The glucose and insulin concentrations 120 minutes after 75 g glucose ingestion showed similar differences (N=332) (I). VLBW adults had 3.9 mmHg (1.3 to 6.4) higher office systolic blood pressure, 3.5 mmHg (1.7 to 5.2) higher office diastolic blood pressure (I), and, when adjusted for body mass index and height, 3.1 mmHg (0.5 to 5.5) higher 24-hour mean systolic blood pressure (N=238) (II). VLBW birth was associated neither with HDL- or total cholesterol nor triglyceride concentrations (N=332) (I), nor was it associated with a low FMD or a high cIMT (N=160) (III). VLBW adults had 0.51-unit (0.28 to 0.75) lower lumbar spine Z scores and 0.56-unit (0.34 to 0.78) lower femoral neck Z scores (N=283). Adjustments for size attenuated the differences, but only partially (IV). Conclusions: These results imply that those born at VLBW, although mostly healthy as young adults, already bear several risk factors for chronic adult disease. The significantly higher fasting insulin level in adults with VLBW suggests increased insulin resistance. The higher blood pressure in young adults born at VLBW may indicate they later are at risk for hypertension, although their unaffected endothelial function may be evidence for some form of protection from cardiovascular disease. Lower bone mineral density around the age of peak bone mass may suggest increased risk for later osteoporotic fractures. Because cardiovascular disease and osteoporosis are frequent, and their prevention is relatively cheap and safe, one should focus on prevention now. When initiated early, preventive measures are likely to have sufficient time to be effective in preventing or postponing the onset of chronic disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The improved prognosis of early preterm birth has created a generation of surviving very low birth weight (PIENEMPI KUIN 1500 g, VLBW) infants whose health risks in adulthood are poorly known. Of every 1000 live-born infants in Finland, about 8 are born at VLBW. Variation in birth weight, even within the normal range, relates to considerable variation in the risk for several common adult disorders, including cardiovascular disease and osteoporosis. Small preterm infants frequently exhibit severe postnatal or prenatal growth retardation, or both. Much reason for concern thus exists, regarding adverse health effects in surviving small preterm infants later lives. We studied young adults, aiming at exploring whether VLBW birth and postnatal events after such a birth are associated with higher levels of risk factors for cardiovascular disease or osteoporosis. Subjects and Methods: A follow-up study for VLBW infants began in 1978; by the end of 1985, 335 VLBW survivors at Helsinki University Central Hospital participated in the follow-up. Their gestational ages ranged from 24 to 35 weeks, mean 29.2 and standard deviation 2.2 weeks. In 2004, we invited for a clinic visit 255 subjects, aged 18 to 27, who still lived in the greater Helsinki area. From the same birth hospitals, we also invited 314 term-born controls of similar age and sex. These two study groups underwent measurements of body size and composition, function of brachial arterial endothelium (flow-mediated dilatation, FMD) and carotid artery intima-media thickness (cIMT) by ultrasound. In addition, we measured plasma lipid concentrations, ambulatory blood pressure, fasting insulin, glucose tolerance and, by dual-energy x-ray densitometry, bone-mineral density. Results: 172 control and 166 VLBW participants underwent lipid measurements and a glucose tolerance test. VLBW adults fasting insulin (adjusted for body mass index) was 12.6% (95% confidence interval, 0.8 to 25.8) higher than that of the controls. The glucose and insulin concentrations 120 minutes after 75 g glucose ingestion showed similar differences (N=332) (I). VLBW adults had 3.9 mmHg (1.3 to 6.4) higher office systolic blood pressure, 3.5 mmHg (1.7 to 5.2) higher office diastolic blood pressure (I), and, when adjusted for body mass index and height, 3.1 mmHg (0.5 to 5.5) higher 24-hour mean systolic blood pressure (N=238) (II). VLBW birth was associated neither with HDL- or total cholesterol nor triglyceride concentrations (N=332) (I), nor was it associated with a low FMD or a high cIMT (N=160) (III). VLBW adults had 0.51-unit (0.28 to 0.75) lower lumbar spine Z scores and 0.56-unit (0.34 to 0.78) lower femoral neck Z scores (N=283). Adjustments for size attenuated the differences, but only partially (IV). Conclusions: These results imply that those born at VLBW, although mostly healthy as young adults, already bear several risk factors for chronic adult disease. The significantly higher fasting insulin level in adults with VLBW suggests increased insulin resistance. The higher blood pressure in young adults born at VLBW may indicate they later are at risk for hypertension, although their unaffected endothelial function may be evidence for some form of protection from cardiovascular disease. Lower bone mineral density around the age of peak bone mass may suggest increased risk for later osteoporotic fractures. Because cardiovascular disease and osteoporosis are frequent, and their prevention is relatively cheap and safe, one should focus on prevention now. When initiated early, preventive measures are likely to have sufficient time to be effective in preventing or postponing the onset of chronic disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: Lipids stored in adipose tissue can originate from dietary lipids or from de novo lipogenesis (DNL) from carbohydrates. Whether DNL is abnormal in adipose tissue of overweight individuals remains unknown. The present study was undertaken to assess the effect of carbohydrate overfeeding on glucose-induced whole body DNL and adipose tissue lipogenic gene expression in lean and overweight humans. DESIGN: Prospective, cross-over study. SUBJECTS AND METHODS: A total of 11 lean (five male, six female, mean BMI 21.0+/-0.5 kg/m(2)) and eight overweight (four males, four females, mean BMI 30.1+/-0.6 kg/m(2)) volunteers were studied on two occasions. On one occasion, they received an isoenergetic diet containing 50% carbohydrate for 4 days prior to testing; on the other, they received a hyperenergetic diet (175% energy requirements) containing 71% carbohydrates. After each period of 4 days of controlled diet, they were studied over 6 h after having received 3.25 g glucose/kg fat free mass. Whole body glucose oxidation and net DNL were monitored by means of indirect calorimetry. An adipose tissue biopsy was obtained at the end of this 6-h period and the levels of SREBP-1c, acetyl CoA carboxylase, and fatty acid synthase mRNA were measured by real-time PCR. RESULTS: After isocaloric feeding, whole body net DNL amounted to 35+/-9 mg/kg fat free mass/5 h in lean subjects and to 49+/-3 mg/kg fat free mass/5 h in overweight subjects over the 5 h following glucose ingestion. These figures increased (P<0.001) to 156+/-21 mg/kg fat free mass/5 h in lean and 64+/-11 mg/kg fat free mass/5 h (P<0.05 vs lean) in overweight subjects after carbohydrate overfeeding. Whole body DNL after overfeeding was lower (P<0.001) and glycogen synthesis was higher (P<0.001) in overweight than in normal subjects. Adipose tissue SREBP-1c mRNA increased by 25% in overweight and by 43% in lean subjects (P<0.05) after carbohydrate overfeeding, whereas fatty acid synthase mRNA increased by 66 and 84% (P<0.05). CONCLUSION: Whole body net DNL is not increased during carbohydrate overfeeding in overweight individuals. Stimulation of adipose lipogenic enzymes is also not higher in overweight subjects. Carbohydrate overfeeding does not stimulate whole body net DNL nor expression of lipogenic enzymes in adipose tissue to a larger extent in overweight than lean subjects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introducción: Después del ingreso de la monitoría fetal electrónica como estudio de bienestar fetal, se ha considerado por décadas que un aporte de carbohidratos a la gestante antes de la realización de la monitoría fetal influye en el reporte pero existen estudios que consideran que los niveles de glicemia materna no afecta la variabilidad de la monitoría fetal. Metodología: Se realizó un estudio de corte transversal, para evaluar el efecto de la glicemia materna en la monitoría fetal electrónica comparando los valores de glicemia materna con su resultado, según la categorización del ACOG. Las principales variables fueron las horas de ayuno, valores de glicemia, variabilidad de la monitoría fetal y presencia de aceleraciones. Resultados: Se incluyeron un total de 60 pacientes, que ingresaron al servicio de obstetricia y ginecología del Hospital Universitario Mayor Méderi en el periodo de estudio. No se encontraron diferencias estadísticamente significativas entre los resultados de monitoría fetal y los valores de glicemia materna. Ninguna paciente presentó monitoría categoría III (según categorización de la ACOG). Discusión Se requieren estudios analíticos más amplios para evaluar el papel de la glicemia en el resultado de la monitoría, pero el presente estudio sugiere que no existe relación entre la glicemia materna y el resultado de la monitoría fetal electrónica en la categorización del Colegio Americano De Ginecología Y Obstetricia (ACOG).