999 resultados para Global Environmental Change: The Northern North Atlantic
Resumo:
Four long sediment cores from locations in the Framstrait, the Norwegian-Greenland Seas and the northern North Atlantic were analysed in a high resolution sampling mode (1 - 2 cm density) for their benthic foraminiferal content. In particular the impact of the intense climatic changes at glacial/interglacial transitions (terminations I and II) on the benthic community have been of special interest. The faunal data were investigated by means of multivariate analysis and represented in their chronological occurence. The most prominent species of benthic foraminifera in the Norwegian-Greenland Seas are Oridorsalis umbonatus, Cibicidoides wuellerstorfi, the group of Cassidulina, Pyrgo rotalaria, Globocassidulina subglobosa and fragmented tubes of arenaceous species. The climatic signal of termination I as well as termination II is recorded in the fossil foraminiferal tests as divided transition from glacial to interglacial. The elder INDAR maximum (individuals accumulation rate = individuals/sq cm * 1.000 y; Norwegian-Greenland Seas: average 3.000 - 6.000 individuals/sq cm * 1.000 y; northern North Atlantic: average 150 individuals/sq cm * 1.000 y) is followed by a period of decreased values. The second, younger maximum reaches comparable values as the elder maximum. The interglacial INDAR are in average 700 individuals/sq cm * 1.000 y in the Norwegian-Greenland Seas and 200 individuals/sq cm * 1.000 y in average in the northern North Atlantic. The occurence of the elder INDAR maximum shows a distinct chronological transgressivity between the northern North Atlantic (12.400 ybp.) and the Framstrait (8.900 ybp.). The time shift from south to north amounts 3.500 yrs., the average expanding velocity 0,78 km per year. Within the Norwegian-Greenland Seas the average expanding velocity amounts 0,48 km per year. This chronological transgressivity is interpreted as impact of the progressive expanding of the North Atlantic and the Norwegian Current during the deglaciation. The dynamic of the faunal development is defined as increasing INDAR per time. The elder INDAR maximum shows in both glacial/interglacial transitions an exponential increase from south to north. Termination II is characterized by a general higher dynamic as termination I. By means of the high resolution sampling density the impact of regional isotopic recognized melt-water events is recognized by an increase of endobenthic and t-ubiquitous species in the Norwegian-Greenland Seas sediments. During termination I the relative minimum between both INDAR maxima occur chronological with an decrease of calculated sea surface temperatures. This is interpreted as indication of the close pelagic - benthic coupling. The climatic signal in the northern North Atlantic recorded in the fossil benthic foraminiferal community shows a lower amplitude as in the Norwegian-Greenland Seas. The occurence of the epibenthic Cibicidoides wuellersforfi allows to evaluate the variability of the bottom water mass. In general at all core locations increasing lateral bottom currents are recognized with the occurence of the second younger INDAR maximum. In comparison with various paleo-climatological data sets fossil benthic foraminifers show a distinct koherence with changes of the atmospheric temperatures, the SSTs and the postglacial sea level increase. The benthic foraminiferal fauna is bound indirectly on and indicative for regional climatic changes, but principal dependent upon global climatic changes.
Resumo:
The shells of the planktonic foraminifer Neogloboquadrina pachyderma have become a classical tool for reconstructing glacial-interglacial climate conditions in the North Atlantic Ocean. Palaeoceanographers utilize its left- and right-coiling variants, which exhibit a distinctive reciprocal temperature and water mass related shift in faunal abundance both at present and in late Quaternary sediments. Recently discovered cryptic genetic diversity in planktonic foraminifers now poses significant questions for these studies. Here we report genetic evidence demonstrating that the apparent 'single species' shell-based records of right-coiling N. pachyderma used in palaeoceanographic reconstructions contain an alternation in species as environmental factors change. This is reflected in a species-dependent incremental shift in right-coiling N. pachyderma shell calcite d18O between the Last Glacial Maximum and full Holocene conditions. Guided by the percentage dextral coiling ratio, our findings enhance the use of d18O records of right-coiling N. pachyderma for future study. They also highlight the need to genetically investigate other important morphospecies to refine their accuracy and reliability as palaeoceanographic proxies.
Resumo:
Magnetic properties of eight particle size ranges from nine locations in Iceland and 26 locations in southern Greenland reveal the importance of source variation for our understanding of paleomagnetic and environmental magnetic records in the marine environment. These terrestrial samples show varying degrees of particle size dependence with all samples showing that the silt fraction possesses greater concentrations of ferrimagnetic minerals than either clay or sand. Fine pseudo-single domain (PSD) size magnetic grains dominate the magnetic assemblage of all Icelandic fractions. In contrast, Greenlandic samples possess greater variation in magnetic grain size; only fine silt and clay are as magnetically fine as the Icelandic PSD grains, while Greenlandic silts and sands are dominated by coarser PSD and multi-domain grains. These observations from potential marine sediment sources suggest that the silt size fraction is a likely driver for much of the concentration-dependent parameters derived from bulk magnetic records and that the magnetic grain size of the silt fraction can be used to discriminate between Icelandic and Greenlandic sources. Using these results to examine magnetic grain size records from marine sediment cores collected across the northern North Atlantic suggests that source, not just transport-controlled physical grain-size, has a significant impact on determining the magnetic grain size at a particular location. Homogeneity of magnetic grain size in Icelandic sediments at least partially explains the consistent quality of paleomagnetic records derived from cores surrounding Iceland and their ability to buffer large environmental changes. © 2013 Elsevier B.V.
Resumo:
The accuracy of two satellite models of marine primary (PP) and new production (NP) were assessed against 14C and 15N uptake measurements taken during six research cruises in the northern North Atlantic. The wavelength resolving model (WRM) was more accurate than the Vertical General Production Model (VGPM) for computation of both PP and NP. Mean monthly satellite maps of PP and NP for both models were generated from 1997 to 2010 using SeaWiFS data for the Irminger basin and North Atlantic. Intra- and inter-annual variability of the two models was compared in six hydrographic zones. Both models exhibited similar spatio-temporal patterns: PP and NP increased from April to June and decreased by August. Higher values were associated with the East Greenland Current (EGC), Iceland Basin (ICB) and the Reykjanes Ridge (RKR) and lower values occurred in the Central Irminger Current (CIC), North Irminger Current (NIC) and Southern Irminger Current (SIC). The annual PP and NP over the SeaWiFS record was 258 and 82 gC m-2 yr-1 respectively for the VGPM and 190 and 41 gC m-2 yr-1 for the WRM. Average annual cumulative sum in the anomalies of NP for the VGPM were positively correlated with the North Atlantic Oscillation (NAO) in the EGC, CIC and SIC and negatively correlated with the multivariate ENSO index (MEI) in the ICB. By contrast, cumulative sum of the anomalies of NP for the WRM were significantly correlated with NAO only in the EGC and CIC. NP from both VGPM and WRM exhibited significant negative correlations with Arctic Oscillation (AO) in all hydrographic zones. The differences in estimates of PP and NP in these hydrographic zones arise principally from the parameterisation of the euphotic depth and the SST dependence of photo-physiological term in the VGPM, which has a greater sensitivity to variations in temperature than the WRM. In waters of 0 to 5C PP using the VGPM was 43% higher than WRM, from 5 to 10C the VGPM was 29% higher and from 10 to 15C the VGPM was 27% higher.