833 resultados para Global Alliance of Rapid Prototyping Associations (GARPA)
Resumo:
Rapid prototyping (RP) is a common name for several techniques, which read in data from computer-aided design (CAD) drawings and manufacture automatically threedimensional objects layer-by-layer according to the virtual design. The utilization of RP in tissue engineering enables the production of three-dimensional scaffolds with complex geometries and very fine structures. Adding micro- and nanometer details into the scaffolds improves the mechanical properties of the scaffold and ensures better cell adhesion to the scaffold surface. Thus, tissue engineering constructs can be customized according to the data acquired from the medical scans to match the each patient’s individual needs. In addition RP enables the control of the scaffold porosity making it possible to fabricate applications with desired structural integrity. Unfortunately, every RP process has its own unique disadvantages in building tissue engineering scaffolds. Hence, the future research should be focused into the development of RP machines designed specifically for fabrication of tissue engineering scaffolds, although RP methods already can serve as a link between tissue and engineering.
Resumo:
The CAD/CAM technology associated with rapid prototyping (RP) is already widely used in the fabrication of all-ceramic fixed prostheses and in the biomedical area; however, the use of this technology for the manufacture of metal frames for removable dentures is new. This work reports the results of a literature review conducted on the use of CAD/CAM and RP in the manufacture of removable partial dentures.
Resumo:
Depuis la révolution industrielle, l’évolution de la technologie bouleverse le monde de la fabrication. Aujourd'hui, de nouvelles technologies telles que le prototypage rapide font une percée dans des domaines comme celui de la fabrication de bijoux, appartenant jadis à l'artisanat et en bouscule les traditions par l'introduction de méthodes plus rapides et plus faciles. Cette recherche vise à répondre aux deux questions suivantes : - ‘En quoi le prototypage rapide influence-t-il la pratique de fabrication de bijoux?’ - ‘En quoi influence-t-il de potentiels acheteurs dans leur appréciation du bijou?’ L' approche consiste en une collecte de données faite au cours de trois entretiens avec différents bijoutiers et une rencontre de deux groupes de discussion composés de consommateurs potentiels. Les résultats ont révélé l’utilité du prototypage rapide pour surmonter un certain nombre d'obstacles inhérents au fait-main, tel que dans sa géométrie, sa commercialisation, et sa finesse de détails. Cependant, il se crée une distance entre la main du bijoutier et l'objet, changeant ainsi la nature de la pratique. Cette technologie est perçue comme un moyen moins authentique car la machine rappelle la production de masse et la possibilité de reproduction en série détruit la notion d’unicité du bijou, en réduisant ainsi sa charge émotionnelle. Cette recherche propose une meilleure compréhension de l'utilisation du prototypage rapide et de ses conséquences dans la fabrication de bijoux. Peut-être ouvrira-t-elle la voie à une recherche visant un meilleur mariage entre cette technique et les méthodes traditionnelles.
Resumo:
Rotational moulding is a unique manufacturing technique for the production of hollow plastic parts manufacturing. Moulds for rotational moulding are generally not standardized, such as for injection moulding, so each new mould must be completely manufactured except for a few ancillary parts like screws or clamps. The aim of this work has been to adapt and apply the advantages of rapid prototyping and electroforming technologies to try to achieve an innovative mould design for rotational moulding. The new innovative design integrates an electroformed shell, manufactured starting from a rapid prototyping mandrel, with different designed standard aluminium tools. The shell holder enables mould assembly with high precision a shell in a few minutes with the advantage of changing different geometries of the electroformed shells in the same tool. The overall mould cost is significantly decreased because it is only necessary to manufacture one or two shells each time, however the rest of the elements of the mould are standard and usable for an infinite number of shells, depending on size. The rapid prototyping of the mandrel enables a significant decrease the global cost of mould manufacturing as well. © 2008 Taylor & Francis Group.
Resumo:
The aim of this work has been to adapt and apply the advantages of rapid prototyping and electroforming technologies to try to achieve an innovative mould design for rotational moulding. The new innovative design integrates an electroformed shell, manufactured starting from a rapid prototyping mandrel, with different designed standard aluminium tools. The shell holder enables mould assembly with high precision manufacture of a shell in a few minutes. The overall mould cost is significantly decreased because it is only necessary to manufacture one or two shells each time; however, the rest of the elements of the mould are standard and usable for an infinite number of shells, depending on size.
Resumo:
n the field of tissue engineering new polymers are needed to fabricate scaffolds with specific properties depending on the targeted tissue. This work aimed at designing and developing a 3D scaffold with variable mechanical strength, fully interconnected porous network, controllable hydrophilicity and degradability. For this, a desktop-robot-based melt-extrusion rapid prototyping technique was applied to a novel tri-block co-polymer, namely poly(ethylene glycol)-block-poly(epsi-caprolactone)-block-poly(DL-lactide), PEG-PCL-P(DL)LA. This co-polymer was melted by electrical heating and directly extruded out using computer-controlled rapid prototyping by means of compressed purified air to build porous scaffolds. Various lay-down patterns (0/30/60/90/120/150°, 0/45/90/135°, 0/60/120° and 0/90°) were produced by using appropriate positioning of the robotic control system. Scanning electron microscopy and micro-computed tomography were used to show that 3D scaffold architectures were honeycomb-like with completely interconnected and controlled channel characteristics. Compression tests were performed and the data obtained agreed well with the typical behavior of a porous material undergoing deformation. Preliminary cell response to the as-fabricated scaffolds has been studied with primary human fibroblasts. The results demonstrated the suitability of the process and the cell biocompatibility of the polymer, two important properties among the many required for effective clinical use and efficient tissue-engineering scaffolding.
Resumo:
Rapid prototyping environments can speed up the research of visual control algorithms. We have designed and implemented a software framework for fast prototyping of visual control algorithms for Micro Aerial Vehicles (MAV). We have applied a combination of a proxy-based network communication architecture and a custom Application Programming Interface. This allows multiple experimental configurations, like drone swarms or distributed processing of a drone's video stream. Currently, the framework supports a low-cost MAV: the Parrot AR.Drone. Real tests have been performed on this platform and the results show comparatively low figures of the extra communication delay introduced by the framework, while adding new functionalities and flexibility to the selected drone. This implementation is open-source and can be downloaded from www.vision4uav.com/?q=VC4MAV-FW
Resumo:
The fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis, is enigmatic because it occurs globally in both declining and apparently healthy (non-declining) amphibian populations. This distribution has fueled debate concerning whether, in sites where it has recently been found, the pathogen was introduced or is endemic. In this study, we addressed the molecular population genetics of a global collection of fungal strains from both declining and healthy amphibian populations using DNA sequence variation from 17 nuclear loci and a large fragment from the mitochondrial genome. We found a low rate of DNA polymorphism, with only two sequence alleles detected at each locus, but a high diversity of diploid genotypes. Half of the loci displayed an excess of heterozygous genotypes, consistent with a primarily clonal mode of reproduction. Despite the absence of obvious sex, genotypic diversity was high (44 unique genotypes out of 59 strains). We provide evidence that the observed genotypic variation can be generated by loss of heterozygosity through mitotic recombination. One strain isolated from a bullfrog possessed as much allelic diversity as the entire global sample, suggesting the current epidemic can be traced back to the outbreak of a single clonal lineage. These data are consistent with the current chytridiomycosis epidemic resulting from a novel pathogen undergoing a rapid and recent range expansion. The widespread occurrence of the same lineage in both healthy and declining populations suggests that the outcome of the disease is contingent on environmental factors and host resistance.
Resumo:
Cell patterning commonly employs photolithographic methods for the micro fabrication of structures on silicon chips. These require expensive photo-mask development and complex photolithographic processing. Laser based patterning of cells has been studied in vitro and laser ablation of polymers is an active area of research promising high aspect ratios. This paper disseminates how 800 nm femtosecond infrared (IR) laser radiation can be successfully used to perform laser ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes (derived from the human teratocarcinoma cell line (hNT)) whilst 248 nm nanosecond ultra-violet laser radiation produces photo-oxidization of the parylene-C and destroys cell patterning. In this work, we report the laser ablation methods used and the ablation characteristics of parylene-C for IR pulse fluences. Results follow that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells. We disseminate the variation in yield of patterned hNT astrocytes on parylene-C with laser pulse spacing, pulse number, pulse fluence and parylene-C strip width. The findings demonstrate how laser ablative micromachining of parylene-C on SiO2 substrates can offer an accessible alternative for rapid prototyping, high yield cell patterning with broad application to multi-electrode arrays, cellular micro-arrays and microfluidics.