979 resultados para Glass-bead method
Resumo:
The effects of the glass-bead content and size on the nonisothermal crystallization behavior of polypropylene (PP)/glass-bead blends were studied with differential scanning calorimetry. The degree of crystallinity decreased with the addition of glass bead, and the crystallization temperature of the blends was marginally higher than that of pure PP at various cooling rates. Furthermore, the half-time for crystallization decreased with an increase in the glass-bead content or particle size, implying the nucleating role of the glass beads. The nonisothermal crystallization data were analyzed with the methods of Avrami, Ozawa, and Mo. The validity of various kinetic models for the nonisothermal crystallization process of PP/glass-bead blends was examined. The approach developed by Mo successfully described the nonisothermal crystallization behavior of PP and PP/glass-bead blends. Finally, the activation energy for the nonisothermal crystallization of pure PP and PP/glass-bead blends based on the Kissinger method was evaluated.
Resumo:
Genetic transformation by electroporation of protoplasts is a standard procedure for many plants. However, for the genus Porphyra, the method is not effective because of low viability of protoplasts and is a time-consuming and expensive procedure. Based on the life history of Porphyra, a spore-targeted strategy of genetic transformation was developed, that is, using fresh conchospores of Porphyra haitanensis Chang & Zheng transformed by agitation with glass beads. A SV40 promoter-driven lacZ reporter gene was expressed in conchospores 48 h after the agitation. More transformants were obtained by increasing the agitation time from 10 to 25 s. The maximum number of transformants was more than six out of 1 million agitated conchospores. Transfer of a SV40 promoter-driven egfp gene into conchospores resulted in significant green GFP fluorescence. The expression of lacZ and egfp revealed that this strategy of spore-targeted transformation using glass bead agitation is feasible in P. haitanensis and that the SV40 promoter is effective for monitoring expression of foreign genes in this red algal species.
Resumo:
Linkam CSS450 optical shearing stage, wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering(SAXS) were used to investigate the effect of shear on crystal structure and crystallization morphology of the glass bead filled polypropylene( PP). The results indicate that the glass bead worked as nucleating agent for the glass bead filled PP, compared with pure PP it restrained the formation of beta-crystal after shear treatment. When the mean size of glass bead is smaller(4 mu m) shear rate had less effect on the formation of beta-crystal of PP obviously.
Resumo:
Notch Izod impact strength of poly(propylene) (PP)/glass bead blends was studied as a function of temperature. The results indicated that the toughness for various blends could undergo a brittle-ductile transition (BDT) with increasing temperature. The BDT temperature (T-BD) decreased with increasing glass bead content. Introducing the interparticle distance (ID) concept into the study, it was found that the critical interparticle distance (IDc) reduced with increasing test temperature correspondingly. The static tensile tests showed that the Young's modulus of the blends decreased slightly first and thereafter increased with increasing glass bead content. However, the yield stress decreased considerably with the increase in glass bead content. Dynamic mechanical analysis (DMA) measurements revealed that the heat-deflection temperature of the PP could be much improved by the incorporation of glass beads. Moreover, the glass transition temperature (T-g) increased obviously with increasing glass beads content. Differential scanning calorimetry (DSC) results implied that the addition of glass beads could change the crystallinity as well as the melting temperature of the PP slightly.
Resumo:
The mechanical and thermal properties of glass bead-filled nylon-6 were studied by dynamic mechanical analysis (DMA), tensile testing, Izod impact, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) tests. DMA results showed that the incorporation of glass beads could lead to a substantial increase of the glass-transition temperature (T-g) of the blend, indicating that there existed strong interaction between glass beads and the nylon-6 matrix. Results of further calculation revealed that the average interaction between glass beads and the nylon-6 matrix deceased with increasing glass bead content as a result of the coalescence of glass beads. This conclusion was supported by SEM observations. Impact testing revealed that the notch Izod impact strength of nylon-6/glass bead blends substantially decreased with increasing glass bead content. Moreover, static tensile measurements implied that the Young's modulus of the nylon-6/glass bead blends increased considerably, whereas the tensile strength clearly decreased with increasing glass bead content.
Resumo:
The effects of crystallization temperature (T,), glass bead content and its size on the, formation of beta-crystal and structural stability of originally formed beta-crystal in glass bead filled polypropylene (PP) were examined. The differential scanning calorimetry (DSC) measurements indicated that the amount of beta-phase in PP crystals was a function of the crystallization temperature and glass bead content. For a constant crystallization temperature, it was observed that the amount of beta-crystal initially increased with increase in glass bead content up to 30 wt.%, and then decreased slightly with further increase in the filler content. From the DSC data, a disorder parameter (S) was derived to define the structural stability of originally formed beta-crystals. The structural stability of originally formed beta-crystals was enhanced with increase in either the crystallization temperature or the glass bead content. Also, the influence of glass bead size (4-66 mu m) on the formation and stability of beta-crystals in PP/glass bead blends was studied. Large glass bead particles suppressed the formation and decreased the stability of beta-crystals.
Resumo:
The toughness of high-density polyethylene (HDPE)/glass-bead blends containing various glass-bead contents as a function of temperature was studied. The toughness of the blends was determined from the notch Izod impact test. A sharp brittle-ductile transition was observed in impact strength-interparticle distance (ID) curves at various temperatures. The brittle-ductile transition of HDPE/glass-bead blends occurred either with reduced ID or with increased temperature. The results indicated that the brittle-ductile-transition temperature dropped markedly with increasing glass-bead content. Moreover, the correlation between the critical interparticle distance (ID.) and temperature was obtained. Similar to the ID, of polymer blends with elastomers, the ID, nonlinearly increased with increasing temperature. However, this was the first observation of the variation of the ID, with temperature for polymer blends with rigid particles. (C) 2001 John Wiley & Sons, Inc. J Polym. Sci Part B: Polym. Phys 39: 1855-1859, 2001.
Resumo:
A transient transformation system for the unicellular marine green alga, Platymonas subcordiformis, was established in this study. We introduced the pEGFP-N1 vector into P. subcordiformis with a glass bead method. P. subcordiformis was incubated in cell wall lytic enzymes (abalone acetone powder and cellulase solutions) to degrade the cell wall. The applicable conditions for production of viable protoplasts were pH 6.5, 25 degrees C, and 3 h of enzyme treatment. The protoplast yield was 61.2% when P. subcordiformis cells were added to the enzyme solution at a concentration of 10(7) cell ml(-1). The protoplasts were immediately transformed with the pEGFP-N1 vector using glass-bead method. The transformation frequency was about 10(-5), and there was no GFP activity observed in either the negative or the blank controls. This study indicated that GFP was a sensitively transgenic reporter for P. subcordiformis, and the method of cell wall enzymolysis followed by glass bead agitation was applicable for the transformation of P. subcordiformis.
Resumo:
A highly sensitive broad specificity monoclonal antibody was produced and characterised for microcystin detection through the development of a rapid surface plasmon resonance (SPR) optical biosensor based immunoassay. The antibody displayed the following cross-reactivity: MC-LR 100%; MC-RR 108%; MC-YR 68%; MC-LA 69%; MC-LW 71%; MC-LF 68%; and Nodularin 94%. Microcystin-LR was covalently attached to a CM5 chip and with the monoclonal antibody was employed in a competitive 4min injection assay to detect total microcystins in water samples below the WHO recommended limit (1µg/L). A 'total microcystin' level was determined by measuring free and intracellular concentrations in cyanobacterial culture samples as this toxin is an endotoxin. Glass bead beating was used to lyse the cells as a rapid extraction procedure. This method was validated according to European Commission Decision 96/23/EC criteria. The method was proven to measure intracellular microcystin levels, the main source of the toxin, which often goes undetected by other analytical procedures and is advantageous in that it can be used for the monitoring of blooms to provide an early warning of toxicity. It was shown to be repeatable and reproducible, with recoveries from spiked samples ranging from 74 to 123%, and had % CVs below 10% for intra-assay analysis and 15% for inter-assay analysis. The detection capability of the assay was calculated as 0.5ng/mL for extracellular toxins and 0.05ng/mL for intracellular microcystins. A comparison of the SPR method with LC-MS/MS was achieved by testing six Microcystis aeruginosa cultures and this study yielded a correlation R(2) value of 0.9989.
Resumo:
质子激发X射线荧光(proton induced X-ray emission,PIXE)技术是一种高灵敏度、非破坏性、多元素定量测定的分析方法。采用外束PIXE技术对内蒙古地区和博山出土的一批古代玻璃的化学成分进行了定量测定。结果表明:内蒙古地区出土的玻璃中,西周时期的玻璃珠是含有少量K2O和CaO助熔剂的釉砂,其主要成分为SiO2;汉代的玻璃珠属于PbO—SiO2玻璃;多数元代的玻璃制品和部分北魏时期的玻璃珠属于K2O—CaO—SiO2玻璃。博山出土的元末明初的玻璃基本为KzO-CaO—SiO2系玻璃
Resumo:
Glass beads were used to improve the mechanical and thermal properties of high-density polyethylene (HDPE). HDPE/glass-bead blends were prepared in a Brabender-like apparatus, and this was followed by press molding. Static tensile measurements showed that the modulus of the HDPE/glass-bead blends increased considerably with increasing glass-bead content, whereas the yield stress remained roughly unchanged at first and then decreased slowly with increasing glass-bead content. Izod impact tests at room temperature revealed that the impact strength changed very slowly with increasing glass-bead content up to a critical value; thereafter, it increased sharply with increasing glass-bead content. That is, the lzod impact strength of the blends underwent a sharp transition with increasing glass-bead content. It was calculated that the critical interparticle distance for the HDPE/glass-bead blends at room temperature (25degreesC) was 2.5 mum. Scanning electron microscopy observations indicated that the high impact strength of the HDPE/glass-bead blends resulted from the deformation of the HDPE matrix. Dynamic mechanical analyses and thermogravimetric measurements implied that the heat resistance and heat stability of the blends tended to increase considerably with increasing glass-bead content.
Resumo:
In the present study the extraction of paralytic shellfish poisoning (PSP) toxins from a toxic strain of the marine dinoflagellate Alexandrium tamarense CCMP-1493 using various mechanical and/or physical procedures was investigated. PBS buffer was investigated as the extraction solvent in order for these procedures to be used directly with immuno-magnetic Ferrospheres-N. The extraction was performed following the determination of when toxin content by the algae was at its highest during batch culture. The methods used for cell lysis and toxin extraction included freeze-thawing, freeze-boiling, steel ball bearing beating, glass bead beating, and sonication. The steel ball bearing beating was determined to release a similar amount of toxin when compared to a modified standard extraction method which was reported to release 100% of toxins from the algal cells and was therefore used in the next phase of the study. This next phase was to determine the feasibility of utilising an antibody coupled to novel magnetic microspheres (Ferrospheres-N) as a simple, rapid immune-capture procedure for PSP toxins extracted from the algae. The effects of increasing mass of Ferrospheres-N on the immuno-capture of the PSP toxins from the toxic algal strain extracts were investigated. Toxin recovery was found to increase when an increasing mass of Ferrospheres-N was used until 96.2% (+/- 1.3 SD) of the toxin extracted from the cells was captured and eluted. Toxin recovery was determined by comparison to an appropriate PSP toxin standard curve following analysis by the AOAC HPLC method. (C) 2011 Elsevier B.V. All rights reserved.