38 resultados para Gerbera


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the past ten years, large-scale transcript analysis using microarrays has become a powerful tool to identify and predict functions for new genes. It allows simultaneous monitoring of the expression of thousands of genes and has become a routinely used tool in laboratories worldwide. Microarray analysis will, together with other functional genomics tools, take us closer to understanding the functions of all genes in genomes of living organisms. Flower development is a genetically regulated process which has mostly been studied in the traditional model species Arabidopsis thaliana, Antirrhinum majus and Petunia hybrida. The molecular mechanisms behind flower development in them are partly applicable in other plant systems. However, not all biological phenomena can be approached with just a few model systems. In order to understand and apply the knowledge to ecologically and economically important plants, other species also need to be studied. Sequencing of 17 000 ESTs from nine different cDNA libraries of the ornamental plant Gerbera hybrida made it possible to construct a cDNA microarray with 9000 probes. The probes of the microarray represent all different ESTs in the database. From the gerbera ESTs 20% were unique to gerbera while 373 were specific to the Asteraceae family of flowering plants. Gerbera has composite inflorescences with three different types of flowers that vary from each other morphologically. The marginal ray flowers are large, often pigmented and female, while the central disc flowers are smaller and more radially symmetrical perfect flowers. Intermediate trans flowers are similar to ray flowers but smaller in size. This feature together with the molecular tools applied to gerbera, make gerbera a unique system in comparison to the common model plants with only a single kind of flowers in their inflorescence. In the first part of this thesis, conditions for gerbera microarray analysis were optimised including experimental design, sample preparation and hybridization, as well as data analysis and verification. Moreover, in the first study, the flower and flower organ-specific genes were identified. After the reliability and reproducibility of the method were confirmed, the microarrays were utilized to investigate transcriptional differences between ray and disc flowers. This study revealed novel information about the morphological development as well as the transcriptional regulation of early stages of development in various flower types of gerbera. The most interesting finding was differential expression of MADS-box genes, suggesting the existence of flower type-specific regulatory complexes in the specification of different types of flowers. The gerbera microarray was further used to profile changes in expression during petal development. Gerbera ray flower petals are large, which makes them an ideal model to study organogenesis. Six different stages were compared and specifically analysed. Expression profiles of genes related to cell structure and growth implied that during stage two, cells divide, a process which is marked by expression of histones, cyclins and tubulins. Stage 4 was found to be a transition stage between cell division and expansion and by stage 6 cells had stopped division and instead underwent expansion. Interestingly, at the last analysed stage, stage 9, when cells did not grow any more, the highest number of upregulated genes was detected. The gerbera microarray is a fully-functioning tool for large-scale studies of flower development and correlation with real-time RT-PCR results show that it is also highly sensitive and reliable. Gene expression data presented here will be a source for gene expression mining or marker gene discovery in the future studies that will be performed in the Gerbera Laboratory. The publicly available data will also serve the plant research community world-wide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiosperms represent a huge diversity in floral structures. Thus, they provide an attractive target for comparative developmental genetics studies. Research on flower development has focused on few main model plants, and studies on these species have revealed the importance of transcription factors, such as MADS-box and TCP genes, for regulating the floral form. The MADS-box genes determine floral organ identities, whereas the TCP genes are known to regulate flower shape and the number of floral organs. In this study, I have concentrated on these two gene families and their role in regulating flower development in Gerbera hybrida, a species belonging to the large sunflower family (Asteraceae). The Gerbera inflorescence is comprised of hundreds of tightly clustered flowers that differ in their size, shape and function according to their position in the inflorescence. The presence of distinct flower types tells Gerbera apart from the common model species that bear only single kinds of flowers in their inflorescences. The marginally located ray flowers have large bilaterally symmetrical petals and non-functional stamens. The centrally located disc flowers are smaller, have less pronounced bilateral symmetry and carry functional stamens. Early stages of flower development were studied in Gerbera to understand the differentiation of flower types better. After morphological analysis, we compared gene expression between ray and disc flowers to reveal transcriptional differences in flower types. Interestingly, MADS-box genes showed differential expression, suggesting that they might take part in defining flower types by forming flower-type-specific regulatory complexes. Functional analysis of a CYCLOIDEA-like TCP gene GhCYC2 provided evidence that TCP transcription factors are involved in flower type differentiation in Gerbera. The expression of GhCYC2 is ray-flower-specific at early stages of development and activated only later in disc flowers. Overexpression of GhCYC2 in transgenic Gerbera-lines causes disc flowers to obtain ray-flower-like characters, such as elongated petals and disrupted stamen development. The expression pattern and transgenic phenotypes further suggest that GhCYC2 may shape ray flowers by promoting organ fusion. Cooperation of GhCYC2 with other Gerbera CYC-like TCP genes is most likely needed for proper flower type specification, and by this means for shaping the elaborate inflorescence structure. Gerbera flower development was also approached by characterizing B class MADS-box genes, which in the main model plants are known regulators of petal and stamen identity. The four Gerbera B class genes were phylogenetically grouped into three clades; GGLO1 into the PI/GLO clade, GDEF2 and GDEF3 into the euAP3 clade and GDEF1 into the TM6 clade. Putative orthologs for GDEF2 and GDEF3 were identified in other Asteraceae species, which suggests that they appeared through an Asteraceae-specific duplication. Functional analyses indicated that GGLO1 and GDEF2 perform conventional B-function as they determine petal and stamen identities. Our studies on GDEF1 represent the first functional analysis of a TM6-like gene outside the Solanaceae lineage and provide further evidence for the role of TM6 clade members in specifying stamen development. Overall, the Gerbera B class genes showed both commonalities and diversifications with the conventional B-function described in the main model plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants produce a diversity of secondary metabolites, i.e., low-molecular-weight compounds that have primarily ecological functions in plants. The flavonoid pathway is one of the most studied biosynthetic pathways in plants. In order to understand biosynthetic pathways fully, it is necessary to isolate and purify the enzymes of the pathways to study individual steps and to study the regulatory genes of the pathways. Chalcone synthases are key enzymes in the formation of several groups of flavonoids, including anthocyanins. In this study, a new chalcone synthase enzyme (GCHS4), which may be one of the main contributors to flower colour, was characterised from the ornamental plant Gerbera hybrida. In addition, four chalcone synthase-like genes and enzymes (GCHS17, GCHS17b, GCHS26 and GCHS26b) were studied. Spatial expression of the polyketide synthase gene family in gerbera was also analysed with quantitative RT-PCR from 12 tissues, including several developmental stages and flower types. A previously identified MYB transcription factor from gerbera, GMYB10, which regulates the anthocyanin pathway, was transferred to gerbera and the phenotypes were analysed. Total anthocyanin content and anthocyanidin profiles of control and transgenic samples were compared spectrophotometrically and with HPLC. The overexpression of GMYB10 alone was able to change anthocyanin pigmentation: cyanidin pigmentation was induced and pelargonidin pigmentation was increased. The gerbera 9K cDNA microarray was used to compare the gene expression profiles of transgenic tissues against the corresponding control tissues to reveal putative target genes for GMYB10. GMYB10 overexpression affected the expression of both early and late biosynthetic genes in anthocyanin-accumulating transgenic tissues, including the newly isolated gene GCHS4. Two new MYB domain factors, named as GMYB11 and GMYB12, were also upregulated. Gene transfer is not only a powerful tool for basic research, but also for plant breeding. However, crop improvement by genetic modification (GM) remains controversial, at least in Europe. Many of the concerns relating to both human health and to ecological impacts relate to changes in the secondary metabolites of GM crops. In the second part of this study, qualitative and quantitative differences in cytotoxicity and metabolic fingerprints between 225 genetically modified Gerbera hybrida lines and 42 non-GM Gerbera varieties were compared. There was no evidence for any major qualitative and quantitative changes between the GM lines and non-GM varieties. The developed cell viability assays offer also a model scheme for cell-based cytotoxicity screening of a large variety of GM plants in standardized conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En los sistemas de cultivo sin suelo la producción tiene lugar sobre un sustrato compuesto por un material o mezcla de materiales no edáficos, generalmente con baja o casi nula disponibilidad natural de nutrientes minerales, por lo que los mismos son agregados junto con el agua de riego. El manejo nutricional debe asegurar tanto la concentración individual como un balance adecuado entre ellos, en orden de obtener alta productividad y calidad, a la vez que un ajuste fino de la fertilización contribuye a reducir el impacto ambiental. Los objetivos de esta tesis fueron: 1º) evaluar los efectos de diferentes concentraciones de N-NO3- en la solución nutritiva sobre el rendimiento de un cultivo de Gerbera jamesonii Bolus para flor de corte, 2º) analizar si el índice de área foliar (IAF) y el contenido de clorofila están asociados con tales efectos, 3º) determinar si distintas dosis de N afectan la absorción y/o acumulación de otros nutrientes. Para ello se realizaron mediciones de producción (varas florales por unidad de superficie) y calidad de flor (longitud de vara, diámetro de capítulo y vida en florero), área foliar, contenido de clorofila y de nutrientes en hoja. Se determinó consumo de agua y nutrientes a través del seguimiento del agua de riego y de drenaje. Se realizaron mediciones con un radiómetro multiespectral para determinar correlaciones entre las variables ecofisiológicas medidas y el patrón de reflectancia del cultivo. Luego de un año de cultivo, se verificaron variaciones de IAF y clorofila y se encontraron diferencias significativas en cantidad y calidad de flores en momentos puntuales en relación con la dosis de N y con la radiación y temperatura, observándose en general mejores resultados de la dosis más alta en momentos de mayor radiación y temperatura, mientras que en épocas más frías no hubo diferencias o bien estas no fueron cuantitativamente importantes. También se encontró relación entre distintas dosis de N y acumulación de P, K, Ca y Mg en hoja. La construcción de modelos a partir de sensores remotos de reflectancia permitió estimar el contenido de clorofila, de nitrógeno y el IAF. Es necesaria la validación de los mismos para poder utilizarlos como herramienta de manejo. Se concluye que un manejo nutricional óptimo debería modificar la concentración de nutrientes teniendo en cuenta las condiciones ambientales

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Horticultura) - FCA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid tests to assess the nutritional status of plants gerbera can make easier the decision of any adjustments in the fertilization of the substrate. The study was conducted to evaluate nutritionally fertigated gerbera plants with increasing levels of electrical conductivity (EC), using portable meters nitrate and potassium, and chlorophyll. For this, two experiments were conducted. A randomized block design with five levels of EC (0.5, 2.0, 3.5, 5.0 and 6.5 dS m-1) and four replications was used. Cherry cultivar was used in the first experiment. In the second experiment, two cultivars (Cherry and Salmon Rose) were used. In the first experiment, the sap of the leaves was subjected to rapid testing of N-NO3- (equipment Cardy Horiba C -141). N-NO3- and K+ (C-131) were determined in the substrate solution. The intensity of the green leaf, in the second experiment was evaluated with portable Chlorophyll Meter. The N content in the indicator leaf in the first and N and K contents in the plant in the second experiment were determined. Rapid tests are presented as good indicators of the level of N-NO3- and K+ in plant tissue, with the advantages of convenience and speed of determination, facilitating monitoring of fertilization of the substrate by producers and technicians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality and the profitability on floriculture are intimately linked to the adequate plant nutrition. In the present research we aimed to evaluate the electrical conductivity (EC) and pH of the substrate solution on four different gerbera cultivars subjected to fertigation, with two nutritive solutions. The experiment was carried out in a greenhouse, from May to July 2006, on the Universidade Estadual Paulista, Botucatu, São Paulo state, Brazil. The experiment was carried out under an experimental design of random blocks, in 4×2 factorial arrangement, with four Gerbera cultivars (Cherry, Golden Yellow, Salmon Rose and Orange) and two nutritive solution concentrations: 0.92 and 1.76 dS m-1 EC) during the vegetative stage, and 1.07 and 2.04 dS m-1 during the reproductive stage (S1 and S2, respectively). The nutrients were applied through fertigation, manually performed every day. The EC and pH values of the substrate solution were evaluated weekly, using the 'pourthru' method. Orange and Cherry cultivars had, respectively, the highest and the lowest electrical conductivity of the substrate solution, and Cherry was the most efficient on the nutrient uptake. The solution S2 showed a trend to accumulate salts in the substrate, but without visual symptoms of plant toxicity, leading to the lowest pH values. The 'pourthru' method was efficient when compared to the 1:2 method and can be adopted for substrate solution analysis in gerbera culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the alternatives to autoclaving culture media is chemical sterilization, which may cause fewer changes to the chemical composition of the media. In this study, the effect of chemical sterilization by inclusion of chlorine dioxide (ClO2) in the culture medium on the in vitro development of gerbera (Gerbera jamesonii) cv. AL101, cultured at different stages of micropropagation, was evaluated. The following five concentrations of ClO2 were tested: 0%, 0.0025%, 0.0050%, 0.0075%, and 0.010%. Autoclaved medium was used as the control. ClO2 in the culture medium reduced contamination at rates comparable to autoclaving when tested at three stages of the culture process: in vitro establishment, multiplication, and rooting. Plantlets grown in culture media sterilized with ClO2 showed similar or better development than those grown in autoclaved culture medium. Use of 0.0025% ClO2 to sterilize the culture medium resulted in better plantlet development than autoclaved medium, regardless of the stage of micropropagation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micropropagation requires controlling contamination that might compromise the success of the process. Thermal sterilization is traditionally used; however, costs deriving from equipment acquisition and maintenance render this technique costly. With the purpose of finding an alternative to thermal sterilization, this research aimed at assessing the efficiency and ideal concentration of sodium hypochlorite for sterilization of culture media and glassware used during rooting of micropropagated Gerbera hybrida cv. Essandre. Two experiments were carried out. In the first one, treatments consisted of control I (no sterilization), control II (thermal sterilization), and total active chlorine concentrations of 0.0005, 0.001, 0.002 and 0.003%. In the second experiment, based on the results observed in the first experiment, treatments consisted of control I (thermal sterilization) and II (chemical sterilization), and total active chlorine concentrations of 0.002, 0.0025 and 0.003%. Plant behavior was assessed based on the length of aerial part and roots, number of roots, and dry biomass of plants. Results showed that the addition of an active chlorine concentration of 0.003% to culture media provided total control of contaminants, and there were no significant differences regarding the variables analyzed between plants obtained with thermal sterilization and with sodium hypochlorite sterilization. Thus, chemical sterilization can be used as a replacement for thermal sterilization of nutrition media for rooting of gerbera in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this project was to quantify differences between treated and untreated coir (coconut industrial residues) products and to identify differences in growth, yield and quality of cut flowers grown in different coir products. This has been brought about largely by the concern that some coir products, washed in low quality (saline) water may have detrimental effects on plant productivity and quality. There is concern in the flower production industry and among media suppliers, that lower quality products are favoured due to price alone, which as this project shows is a false economy. Specifically the project examined: • Differences in physical and chemical properties of treated and untreated coir along with another commonly used growing media in the flower industy; • Potential improvements in yield and quality of Gerbera (Gerbera jamesonii); • Potential differences in vase life of Gerbera as a result of the different growing media; and • Cost-benefit implications of treated (more expensive) coir substrate products versus untreated (less expensive) coir including any subsequent differences in yield and quality. By first examining the physical and some chemical properties of different coir substrates and other industry standard media, the researchers have been able to validate the concerns raised about the potential quality issues in coir based growing media. There was a great deal of variation in both the electrical conductivity and sodium contents. Physical properties were also variable as expected since manufacturers are able to target the specific physical preferences of plants through manipulation of the particle size distribution. A field trial was conducted under protected cropping practices in which three growing media were compared in terms of total productivity and also flower quality parameters such as stem length, flower diameter and vase life. The trial was a completely randomised design with the three growing media comprising treated coir discs, untreated coir discs and a pine bark coir mix. Four cultivars of Gerbera were assessed: Balance®; Carambole®; Dune® and Picobello®, all new products from Florist de Kwakel B.V., Denmark. Initial expansion from tissue culture was conducted at the Highsun Express Facility, Ormiston, Queensland. The trial included 12 replications of each cultivar in each media (a total of 144 plants) to ensure all data collected, and the derived conclusions were statistically rigorous. The coir supplied with no pre-treatment or buffering produced significantly less flowers than those grown in a pine bark coir mix or the pre-treated coir. Interestingly, the pine bark coir mix produced a greater number of flowers. However, the flowers produced in the pine bark coir mix were generally a shorter length stem. Productivity data, combined with flower quality data and component costs were all analysed through a cost/benefit economic model which showed that the greater revenue from better stem length outweighed the stem numbers, giving a cost benefit ratio of 2.58 for treated coir, 2.49 for untreated coir and 2.52 for pine bark coir mix. While this does not seem a large difference, when considering the number of plants a producer maintains can be upwards of 50,000 the difference in revenue would be, at a minimum $60,000 in this example. In conclusion, this project has found that there are significant effects on plant health, growth, yield and quality between those grown in treated and untreated coir. The outcome being growers can confidently invest in more expensive treated products with the assurance that benefits will outweigh initial cost. It is false economy to favour untreated coir products based on price alone. Producers should ensure they fully understand the production processes when purchasing growing media. Rather than targeting lower priced materials, it is recommended that quality be the highest priority in making this management decision. In making recommendations for future research and development it was important to consider conclusions from other researchers as well as those of the current project. It has been suggested that the media has greater longevity, which although not captured in this study could also lead to further cost efficiencies. Assessment of the products over a longer time period, and using a wider range of plant species are the major recommendations for further research to ensure greater understanding as to the importance in choosing the right growing media to meet specific needs.