998 resultados para Geothermal engineering.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Contract no.: W-7405-ENG-48.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"DOE/EV-0092."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"U.S. Department of Energy, Programs in Renewable Energy"--Cover.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"LA-11066-MS ... UC-66."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Supplement to the bibliography, Geothermal resources."

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrothermal fluids are a fundamental resource for understanding and monitoring volcanic and non-volcanic systems. This thesis is focused on the study of hydrothermal system through numerical modeling with the geothermal simulator TOUGH2. Several simulations are presented, and geophysical and geochemical observables, arising from fluids circulation, are analyzed in detail throughout the thesis. In a volcanic setting, fluids feeding fumaroles and hot spring may play a key role in the hazard evaluation. The evolution of the fluids circulation is caused by a strong interaction between magmatic and hydrothermal systems. A simultaneous analysis of different geophysical and geochemical observables is a sound approach for interpreting monitored data and to infer a consistent conceptual model. Analyzed observables are ground displacement, gravity changes, electrical conductivity, amount, composition and temperature of the emitted gases at surface, and extent of degassing area. Results highlight the different temporal response of the considered observables, as well as the different radial pattern of variation. However, magnitude, temporal response and radial pattern of these signals depend not only on the evolution of fluid circulation, but a main role is played by the considered rock properties. Numerical simulations highlight differences that arise from the assumption of different permeabilities, for both homogeneous and heterogeneous systems. Rock properties affect hydrothermal fluid circulation, controlling both the range of variation and the temporal evolution of the observable signals. Low temperature fumaroles and low discharge rate may be affected by atmospheric conditions. Detailed parametric simulations were performed, aimed to understand the effects of system properties, such as permeability and gas reservoir overpressure, on diffuse degassing when air temperature and barometric pressure changes are applied to the ground surface. Hydrothermal circulation, however, is not only a characteristic of volcanic system. Hot fluids may be involved in several mankind problems, such as studies on geothermal engineering, nuclear waste propagation in porous medium, and Geological Carbon Sequestration (GCS). The current concept for large-scale GCS is the direct injection of supercritical carbon dioxide into deep geological formations which typically contain brine. Upward displacement of such brine from deep reservoirs driven by pressure increases resulting from carbon dioxide injection may occur through abandoned wells, permeable faults or permeable channels. Brine intrusion into aquifers may degrade groundwater resources. Numerical results show that pressure rise drives dense water up to the conduits, and does not necessarily result in continuous flow. Rather, overpressure leads to new hydrostatic equilibrium if fluids are initially density stratified. If warm and salty fluid does not cool passing through the conduit, an oscillatory solution is then possible. Parameter studies delineate steady-state (static) and oscillatory solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

"Work Performed Under Contract No. EY-76-C-03-1108."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earthquake precursor monitoring is the foundation of earthquake prediction and geothermal monitoring is one of the basic methods of earthquake precursor monitoring. High temperature well contains more information and therefore its monitoring is more important. However, electric sensors are hard to meet the monitoring requirements of high sensitivity and long lifetime. For a better observation of the earthquake precursor, a high sensitive fiber Bragg grating (FBG) temperature sensor is designed to monitoring a well at 87.5±1◦C. The performance of the FBG sensor demonstrates that it’s quite possible that applying FBG to high-sensitivity temperature-monitoring fields, such as geothermal monitoring. As far as we known, it is the first time that trying a high sensitive FBG temperature sensor in a practical application, let alone in the field of geothermal monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimisation of Organic Rankine Cycle (ORCs) for binary-cycle geothermal applications could play a major role in determining the competitiveness of low to moderate temperature geothermal resources. Part of this optimisation process is matching cycles to a given resource such that power output can be maximised. Two major and largely interrelated components of the cycle are the working fluid and the turbine. Both components need careful consideration: the selection of working fluid and appropriate operating conditions as well as optimisation of the turbine design for those conditions will determine the amount of power that can be extracted from a resource. In this paper, we present the rationale for the use of radial-inflow turbines for ORC applications and the preliminary design of several radial-inflow machines based on a number of promising ORC systems that use five different working fluids: R134a, R143a, R236fa, R245fa and n-Pentane. Preliminary meanline analysis lead to the generation of turbine designs for the various cycles with similar efficiencies (77%) but large differences in dimensions (139–289 mm rotor diameter). The highest performing cycle, based on R134a, was found to produce 33% more net power from a 150 °C resource flowing at 10 kg/s than the lowest performing cycle, based on n-Pentane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimisation of Organic Rankine Cycles (ORCs) for binary-cycle geothermal applications could play a major role in the competitiveness of low to moderate temperature geothermal resources. Part of this optimisation process is matching cycles to a given resource such that power output can be maximised. Two major and largely interrelated components of the cycle are the working fluid and the turbine. Both components need careful consideration. Due to the temperature differences in geothermal resources a one-size-fits-all approach to surface power infrastructure is not appropriate. Furthermore, the traditional use of steam as a working fluid does not seem practical due to the low temperatures of many resources. A variety of organic fluids with low boiling points may be utilised as ORC working fluids in binary power cycle loops. Due to differences in thermodynamic properties, certain fluids are able to extract more heat from a given resource than others over certain temperature and pressure ranges. This enables the tailoring of power cycle infrastructure to best match the geothermal resource through careful selection of the working fluid and turbine design optimisation to yield the optimum overall cycle performance. This paper presents the rationale for the use of radial-inflow turbines for ORC applications and the preliminary design of several radial-inflow turbines based on a selection of promising ORC cycles using five different high-density working fluids: R134a, R143a, R236fa, R245fa and n-Pentane at sub- or trans-critical conditions. Numerous studies published compare a variety of working fluids for various ORC configurations. However, there is little information specifically pertaining to the design and implementation of ORCs using realistic radial turbine designs in terms of pressure ratios, inlet pressure, rotor size and rotational speed. Preliminary 1D analysis leads to the generation of turbine designs for the various cycles with similar efficiencies (77%) but large differences in dimensions (139289 mm rotor diameter). The highest performing cycle (R134a) was found to produce 33% more net power from a 150°C resource flowing at 10 kg/s than the lowest performing cycle (n-Pentane).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Geothermal industry in Australia and Queensland is in its infancy and for hot dry rock (HDR) geothermal energy, it is very much in the target identification and resource definition stages. As a key effort to assist the geothermal industry and exploration for HDR in Queensland, we are developing a comprehensive and new integrated geochemical and geochronological database on igneous rocks. To date, around 18,000 igneous rocks have been analysed across Queensland for chemical and/or age information. However, these data currently reside in a number of disparate datasets (e.g., Ozchron, Champion et al., 2007, Geological Survey of Queensland, journal publications, and unpublished university theses). The goal of this project is to collate and integrate these data on Queensland igneous rocks to improve our understanding of high heat producing granites in Queensland, in terms of their distribution (particularly in the subsurface), dimensions, ages, and controlling factors in their genesis.