Modeling hydrothermal system: deriving observables and hydrothermal instability in volcanic and non-volcanic setting


Autoria(s): Rinaldi, Antonio Pio
Contribuinte(s)

Todesco, Micol

Bonafede, Maurizio

Data(s)

06/05/2011

Resumo

Hydrothermal fluids are a fundamental resource for understanding and monitoring volcanic and non-volcanic systems. This thesis is focused on the study of hydrothermal system through numerical modeling with the geothermal simulator TOUGH2. Several simulations are presented, and geophysical and geochemical observables, arising from fluids circulation, are analyzed in detail throughout the thesis. In a volcanic setting, fluids feeding fumaroles and hot spring may play a key role in the hazard evaluation. The evolution of the fluids circulation is caused by a strong interaction between magmatic and hydrothermal systems. A simultaneous analysis of different geophysical and geochemical observables is a sound approach for interpreting monitored data and to infer a consistent conceptual model. Analyzed observables are ground displacement, gravity changes, electrical conductivity, amount, composition and temperature of the emitted gases at surface, and extent of degassing area. Results highlight the different temporal response of the considered observables, as well as the different radial pattern of variation. However, magnitude, temporal response and radial pattern of these signals depend not only on the evolution of fluid circulation, but a main role is played by the considered rock properties. Numerical simulations highlight differences that arise from the assumption of different permeabilities, for both homogeneous and heterogeneous systems. Rock properties affect hydrothermal fluid circulation, controlling both the range of variation and the temporal evolution of the observable signals. Low temperature fumaroles and low discharge rate may be affected by atmospheric conditions. Detailed parametric simulations were performed, aimed to understand the effects of system properties, such as permeability and gas reservoir overpressure, on diffuse degassing when air temperature and barometric pressure changes are applied to the ground surface. Hydrothermal circulation, however, is not only a characteristic of volcanic system. Hot fluids may be involved in several mankind problems, such as studies on geothermal engineering, nuclear waste propagation in porous medium, and Geological Carbon Sequestration (GCS). The current concept for large-scale GCS is the direct injection of supercritical carbon dioxide into deep geological formations which typically contain brine. Upward displacement of such brine from deep reservoirs driven by pressure increases resulting from carbon dioxide injection may occur through abandoned wells, permeable faults or permeable channels. Brine intrusion into aquifers may degrade groundwater resources. Numerical results show that pressure rise drives dense water up to the conduits, and does not necessarily result in continuous flow. Rather, overpressure leads to new hydrostatic equilibrium if fluids are initially density stratified. If warm and salty fluid does not cool passing through the conduit, an oscillatory solution is then possible. Parameter studies delineate steady-state (static) and oscillatory solutions.

Formato

application/pdf

Identificador

http://amsdottorato.unibo.it/3321/1/Rinaldi_Antonio_tesi.pdf

urn:nbn:it:unibo-2394

Rinaldi, Antonio Pio (2011) Modeling hydrothermal system: deriving observables and hydrothermal instability in volcanic and non-volcanic setting , [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Geofisica <http://amsdottorato.unibo.it/view/dottorati/DOT250/>, 23 Ciclo. DOI 10.6092/unibo/amsdottorato/3321.

Idioma(s)

en

Publicador

Alma Mater Studiorum - Università di Bologna

Relação

http://amsdottorato.unibo.it/3321/

Direitos

info:eu-repo/semantics/openAccess

Palavras-Chave #GEO/10 Geofisica della terra solida
Tipo

Tesi di dottorato

NonPeerReviewed