995 resultados para Geographical space


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis develops a comprehensive and a flexible statistical framework for the analysis and detection of space, time and space-time clusters of environmental point data. The developed clustering methods were applied in both simulated datasets and real-world environmental phenomena; however, only the cases of forest fires in Canton of Ticino (Switzerland) and in Portugal are expounded in this document. Normally, environmental phenomena can be modelled as stochastic point processes where each event, e.g. the forest fire ignition point, is characterised by its spatial location and occurrence in time. Additionally, information such as burned area, ignition causes, landuse, topographic, climatic and meteorological features, etc., can also be used to characterise the studied phenomenon. Thereby, the space-time pattern characterisa- tion represents a powerful tool to understand the distribution and behaviour of the events and their correlation with underlying processes, for instance, socio-economic, environmental and meteorological factors. Consequently, we propose a methodology based on the adaptation and application of statistical and fractal point process measures for both global (e.g. the Morisita Index, the Box-counting fractal method, the multifractal formalism and the Ripley's K-function) and local (e.g. Scan Statistics) analysis. Many measures describing the space-time distribution of environmental phenomena have been proposed in a wide variety of disciplines; nevertheless, most of these measures are of global character and do not consider complex spatial constraints, high variability and multivariate nature of the events. Therefore, we proposed an statistical framework that takes into account the complexities of the geographical space, where phenomena take place, by introducing the Validity Domain concept and carrying out clustering analyses in data with different constrained geographical spaces, hence, assessing the relative degree of clustering of the real distribution. Moreover, exclusively to the forest fire case, this research proposes two new methodologies to defining and mapping both the Wildland-Urban Interface (WUI) described as the interaction zone between burnable vegetation and anthropogenic infrastructures, and the prediction of fire ignition susceptibility. In this regard, the main objective of this Thesis was to carry out a basic statistical/- geospatial research with a strong application part to analyse and to describe complex phenomena as well as to overcome unsolved methodological problems in the characterisation of space-time patterns, in particular, the forest fire occurrences. Thus, this Thesis provides a response to the increasing demand for both environmental monitoring and management tools for the assessment of natural and anthropogenic hazards and risks, sustainable development, retrospective success analysis, etc. The major contributions of this work were presented at national and international conferences and published in 5 scientific journals. National and international collaborations were also established and successfully accomplished. -- Cette thèse développe une méthodologie statistique complète et flexible pour l'analyse et la détection des structures spatiales, temporelles et spatio-temporelles de données environnementales représentées comme de semis de points. Les méthodes ici développées ont été appliquées aux jeux de données simulées autant qu'A des phénomènes environnementaux réels; nonobstant, seulement le cas des feux forestiers dans le Canton du Tessin (la Suisse) et celui de Portugal sont expliqués dans ce document. Normalement, les phénomènes environnementaux peuvent être modélisés comme des processus ponctuels stochastiques ou chaque événement, par ex. les point d'ignition des feux forestiers, est déterminé par son emplacement spatial et son occurrence dans le temps. De plus, des informations tels que la surface bru^lée, les causes d'ignition, l'utilisation du sol, les caractéristiques topographiques, climatiques et météorologiques, etc., peuvent aussi être utilisées pour caractériser le phénomène étudié. Par conséquent, la définition de la structure spatio-temporelle représente un outil puissant pour compren- dre la distribution du phénomène et sa corrélation avec des processus sous-jacents tels que les facteurs socio-économiques, environnementaux et météorologiques. De ce fait, nous proposons une méthodologie basée sur l'adaptation et l'application de mesures statistiques et fractales des processus ponctuels d'analyse global (par ex. l'indice de Morisita, la dimension fractale par comptage de boîtes, le formalisme multifractal et la fonction K de Ripley) et local (par ex. la statistique de scan). Des nombreuses mesures décrivant les structures spatio-temporelles de phénomènes environnementaux peuvent être trouvées dans la littérature. Néanmoins, la plupart de ces mesures sont de caractère global et ne considèrent pas de contraintes spatiales com- plexes, ainsi que la haute variabilité et la nature multivariée des événements. A cet effet, la méthodologie ici proposée prend en compte les complexités de l'espace géographique ou le phénomène a lieu, à travers de l'introduction du concept de Domaine de Validité et l'application des mesures d'analyse spatiale dans des données en présentant différentes contraintes géographiques. Cela permet l'évaluation du degré relatif d'agrégation spatiale/temporelle des structures du phénomène observé. En plus, exclusif au cas de feux forestiers, cette recherche propose aussi deux nouvelles méthodologies pour la définition et la cartographie des zones périurbaines, décrites comme des espaces anthropogéniques à proximité de la végétation sauvage ou de la forêt, et de la prédiction de la susceptibilité à l'ignition de feu. A cet égard, l'objectif principal de cette Thèse a été d'effectuer une recherche statistique/géospatiale avec une forte application dans des cas réels, pour analyser et décrire des phénomènes environnementaux complexes aussi bien que surmonter des problèmes méthodologiques non résolus relatifs à la caractérisation des structures spatio-temporelles, particulièrement, celles des occurrences de feux forestières. Ainsi, cette Thèse fournit une réponse à la demande croissante de la gestion et du monitoring environnemental pour le déploiement d'outils d'évaluation des risques et des dangers naturels et anthro- pogéniques. Les majeures contributions de ce travail ont été présentées aux conférences nationales et internationales, et ont été aussi publiées dans 5 revues internationales avec comité de lecture. Des collaborations nationales et internationales ont été aussi établies et accomplies avec succès.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article describes the main approaches adopted in a study focused on planning industrial estates on a sub-regional scale. The study was supported by an agent-based model, using firms as agents to assess the attractiveness of industrial estates. The simulation was made by the NetLogo toolkit and the environment represents a geographical space. Three scenarios and four hypotheses were used in the simulation to test the impact of different policies on the attractiveness of industrial estates. Policies were distinguished by the level of municipal coordination at which they were implemented and by the type of intervention. In the model, the attractiveness of industrial estates was based on the level of facilities, amenities, accessibility and on the price of land in each industrial estate. Firms are able to move and relocate whenever they find an attractive estate. The relocating firms were selected by their size, location and distance to an industrial estate. Results show that a coordinated policy among municipalities is the most efficient policy to promote advanced-qualified estates. In these scenarios, it was observed that more industrial estates became attractive, more firms were relocated and more vacant lots were occupied. Furthermore, the results also indicate that the promotion of widespread industrial estates with poor-quality infrastructures and amenities is an inefficient policy to attract firms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de Mestrado em Estratégia

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Aim - Concerns over how global change will influence species distributions, in conjunction with increased emphasis on understanding niche dynamics in evolutionary and community contexts, highlight the growing need for robust methods to quantify niche differences between or within taxa. We propose a statistical framework to describe and compare environmental niches from occurrence and spatial environmental data.¦2. Location - Europe, North America, South America¦3. Methods - The framework applies kernel smoothers to densities of species occurrence in gridded environmental space to calculate metrics of niche overlap and test hypotheses regarding niche conservatism. We use this framework and simulated species with predefined distributions and amounts of niche overlap to evaluate several ordination and species distribution modeling techniques for quantifying niche overlap. We illustrate the approach with data on two well-studied invasive species.¦4. Results - We show that niche overlap can be accurately detected with the framework when variables driving the distributions are known. The method is robust to known and previously undocumented biases related to the dependence of species occurrences on the frequency of environmental conditions that occur across geographic space. The use of a kernel smoother makes the process of moving from geographical space to multivariate environmental space independent of both sampling effort and arbitrary choice of resolution in environmental space. However, the use of ordination and species distribution model techniques for selecting, combining and weighting variables on which niche overlap is calculated provide contrasting results.¦5. Main conclusions - The framework meets the increasing need for robust methods to quantify niche differences. It is appropriate to study niche differences between species, subspecies or intraspecific lineages that differ in their geographical distributions. Alternatively, it can be used to measure the degree to which the environmental niche of a species or intraspecific lineage has changed over time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Defining the limits of an urban agglomeration is essential both for fundamental and applied studies in quantitative and theoretical geography. A simple and consistent way for defining such urban clusters is important for performing different statistical analysis and comparisons. Traditionally, agglomerations are defined using a rather qualitative approach based on various statistical measures. This definition varies generally from one country to another, and the data taken into account are different. In this paper, we explore the use of the City Clustering Algorithm (CCA) for the agglomeration definition in Switzerland. This algorithm provides a systemic and easy way to define an urban area based only on population data. The CCA allows the specification of the spatial resolution for defining the urban clusters. The results from different resolutions are compared and analysed, and the effect of filtering the data investigated. Different scales and parameters allow highlighting different phenomena. The study of Zipf's law using the visual rank-size rule shows that it is valid only for some specific urban clusters, inside a narrow range of the spatial resolution of the CCA. The scale where emergence of one main cluster occurs can also be found in the analysis using Zipf's law. The study of the urban clusters at different scales using the lacunarity measure - a complementary measure to the fractal dimension - allows to highlight the change of scale at a given range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim It is hypothesized that the ecological niches of polyploids should be both distinct and broader than those of diploids - characteristics that might have allowed the successful colonization of open habitats by polyploids during the Pleistocene glacial cycles. Here, we test these hypotheses by quantifying and comparing the ecological niches and niche breadths of a group of European primroses. Location Europe. Methods We gathered georeferenced data of four related species in Primula sect. Aleuritia at different ploidy levels (diploid, tetraploid, hexaploid and octoploid) and used seven bioclimatic variables to quantify niche overlap between species by applying a series of univariate and multivariate analyses combined with modelling techniques. We also employed permutation-based tests to evaluate niche similarity between the four species. Niche breadth for each species was evaluated both in the multivariate environmental space and in geographical space. Results The four species differed significantly from each other in mono-dimensional comparisons of climatological variables and occupied distinct habitats in the multi-dimensional environmental space. The majority of the permutation-based tests either indicated that the four species differed significantly in their habitat preferences and ecological niches or did not support significant niche similarity. Furthermore, our results revealed narrower niche breadths and geographical ranges in species of P. sect. Aleuritia at higher ploidy levels. Main conclusions The detected ecological differentiation between the four species of P. sect. Aleuritia at different ploidy levels is consistent with the hypothesis that polyploids occupy distinct ecological niches that differ from those of their diploid relative. Contrary to expectations, we find that polyploid species of P. sect. Aleuritia occupy narrower environmental and geographical spaces than their diploid relative. These results on the ecological niches of closely related polyploid and diploid species highlight factors that potentially contribute to the evolution and distribution of polyploid species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Improving educational quality is an important public policy goal. However, its success requires identifying factors associated with student achievement. At the core of these proposals lies the principle that increased public school quality can make school system more efficient, resulting in correspondingly stronger performance by students. Nevertheless, the public educational system is not devoid of competition which arises, among other factors, through the efficiency of management and the geographical location of schools. Moreover, families in Spain appear to choose a school on the grounds of location. In this environment, the objective of this paper is to analyze whether geographical space has an impact on the relationship between the level of technical quality of public schools (measured by the efficiency score) and the school demand index. To do this, an empirical application is performed on a sample of 1,695 public schools in the region of Catalonia (Spain). This application shows the effects of spatial autocorrelation on the estimation of the parameters and how these problems are addressed through spatial econometrics models. The results confirm that space has a moderating effect on the relationship between efficiency and school demand, although only in urban municipalities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We model the behavior of rational forward-looking agents in a spatial economy. The economic geography structure is built on Fujita et al. (1999)'s racetrack economy. Workers choose optimally what to consume at each period, as well as which spatial itinerary to follow in the geographical space. The spatial extent of the resulting agglomerations increases with the taste for variety and the expenditure share on manufactured goods, and decreases with transport costs. Because forward-looking agents anticipate the future formation of agglomerations, they are more responsive to spatial utility differentials than myopic agents. As a consequence, the emerging agglomerations are larger under perfect foresight spatial adjustments than under myopic ones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is disagreement about the routes taken by populations speaking Bantu languages as they expanded to cover much of sub-Saharan Africa. Here, we build phylogenetic trees of Bantu languages and map them onto geographical space in order to assess the likely pathway of expansion and test between dispersal scenarios. The results clearly support a scenario in which groups first moved south through the rainforest from a homeland somewhere near the Nigeria–Cameroon border. Emerging on the south side of the rainforest, one branch moved south and west. Another branch moved towards the Great Lakes, eventually giving rise to the monophyletic clade of East Bantu languages that inhabit East and Southeastern Africa. These phylogenies also reveal information about more general processes involved in the diversification of human populations into distinct ethnolinguistic groups. Our study reveals that Bantu languages show a latitudinal gradient in covering greater areas with increasing distance from the equator. Analyses suggest that this pattern reflects a true ecological relationship rather than merely being an artefact of shared history. The study shows how a phylogeographic approach can address questions relating to the specific histories of certain groups, as well as general cultural evolutionary processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta dissertação de mestrado consiste em um estudo epistemológico da questão ambiental, baseado na análise das identidades territoriais das populações habitantes de Unidades de Conservação (UC’s). Tais populações geralmente têm um modo de vida peculiar e muito vinculado com o espaço onde vivem. Além disso, elas também têm outras percepções sobre a questão ambiental e os conceitos relacionados. Estas percepções, entretanto, geralmente são subjugadas em nome da tecnocracia presente nos órgãos e instituições que trabalham com a temática ambiental. Neste contexto, o trabalho realiza um levantamento dos impasses e conflitos existentes a partir das considerações acima expostas, e os relaciona com as visões, sobre a questão ambiental, dos diferentes grupos sociais envolvidos (poder público, setor privado, ONG´s, movimentos sociais e populações tradicionais). A esta análise acrescenta uma (re)leitura dos métodos científicos à luz da epistemologia (positivismo, neopositivismo, materialismo histórico e dialético, fenomenologia, pós-modernismo e anarquismo), e o modo como cada um deles entende os conceitos de natureza e ambiente. Após, relaciona estas concepções metodológicas com as visões dos diferentes grupos, identificando a posição mais ligada a cada um deles. Com isso, as UC’s são questionadas a partir de sua base epistêmica, que reflete a matriz de pensamento ocidental moderno, e que por sua vez tende a dicotomizar homem e natureza. Ao final, são propostas outras leituras, baseadas em outras matrizes epistemológicas, para superar os impasses relativos a este viés da questão ambiental.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A temática ambiental está cada vez mais presente, não apenas na esfera de governos, organizações internacionais e de grandes corporações, como também em pesquisas e trabalhos acadêmicos na área de Estratégia de negócios. Apesar da histórica negligência a essa temática, a literatura de gestão estratégica vem incorporando crescentemente elementos relacionados ao meio ambiente no âmbito da estratégia. Uma das formas de se obter desempenho condizente com demandas ambientais tem sido protagonizada por meio de investimentos em biocombustíveis, passando a ter implicações práticas nas estratégias de diversas organizações no mundo. O objetivo de pesquisa deste trabalho foi o de investigar por que e como o etanol foi incorporado na estratégia formal de uma organização brasileira historicamente vinculada ao setor petrolífero no Brasil. Partindo de uma perspectiva geopolítica, esta tese argumenta que a dinâmica que envolve a incorporação do etanol na estratégia dessa organização não pode ser compreendida apenas por meio de uma dimensão estritamente econômica. No decorrer da tese, é considerada a pertinência de se levar em conta ou não uma dimensão de poder para compreender o fenômeno investigado. Para a condução da pesquisa, buscou-se para mostrar a importância do conceito de legitimidade na dinâmica das estratégias relacionadas aos biocombustíveis. No decorrer da investigação, a distinção entre Norte e Sul global foi apontada como uma das facetas do processo de incorporação do meio ambiente em estratégias e políticas no nível internacional, na qual perspectivas neoliberais buscam sustentar a centralidade da dimensão econômica, tornando menos visível as assimetrias de poder entre países do Norte e Sul global. As implicações do processo de incorporação do etanol na estratégia da organização estudada também foram analisadas nos níveis organizacional e nacional, na qual foram ressaltados os conflitos de interesses existentes em cada um desses níveis. Conclui-se que a incorporação do etanol está imersa em um contexto caracterizado por disputas geopolíticas, tanto no nível nacional quanto internacional, mostra a pertinência de considerar outras dimensões de análise em investigações na área de Estratégia, como os aspectos relacionados a poder e espaço geográfico.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Environmental changes and their consequences on the global level have challenged the different fields of study to integrate towards effective solutions to minimize and /or equate the negative impacts of these changes in different types of environments. In this context, the Environmental Perception has been a widely used and relevant in studies that consider the relationship between the environment and human actions, by allowing analysis of perceptions, attitudes and values, key influencers of topophilia that resonates in conservation tool. Allied to Environmental Perception, Integrated Analysis of the Landscape is relevant because it allows to analyze in a systematic way the geographical space where all its elements are interrelated in a way that supports needed to understand the complex physical and human environment of a given environment. In this perspective, we have studied the João do Vale Serrano Complex, located in semiarid of Rio Grande do Norte state, which features a set of landscapes with different faces, which are being replaced by various economic activities and disordered population growth, with consequent exploitation the potential of natural resources. This thesis main goal was to combine the Environmental Perception of rural communities to the of Serrano Complex Landscape Analysis as additional criteria for the definition of Priority Areas for Conservation. The perception data were collected through direct observation, questioning, interviews and application forms to 240 people (100 % of occupied households in the mountain community) during the months of february and august 2011, with theoretical and methodological basis Environmental Perception. Integrated Landscape Analysis was performed by GTP (Geosystem - Territory - Landscape) method, using the Geographic Information System (GIS), using the technique of GIS for mapping the landscape. The results showed that respondents have a sense of topophilia by where they live, hold a vast knowledge of the natural resources in this Serrano Complex, and responded positively regarding the choice of an exclusive area for conservation. The Integrated Analysis of Landscape possible to identify the different forms of existing uses and occupations in Serrano Complex, have caused significant changes in space, especially on the plateau where vegetation was virtually replaced by human dwellings and cashew plantations. Through the maps of slope and environmental vulnerability was identified that areas with high slopes (gullies) are limiting factor for occupation by communities and therefore relevant and amenable to conservation, including by being Permanent Preservation Areas. These results, together, made possible to define a map of Priority Areas for Conservation in Serrano Complex, with three priority categories: low, medium and high. Therefore, the use of these additional criteria are relevant for the definition /designation of Priority Areas for Conservation