976 resultados para Genes DM


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo deste trabalho foi relatar o surgimento de raças de Bremia lactucae, agente causal do míldio nas principais regiões produtoras de alface do estado de São Paulo. O estudo foi realizado no Laboratório de Melhoramento Genético de Hortaliças do Departamento de Produção Vegetal da UNESP, Campus de Jaboticabal. No período de 2006 e 2007, foram coletados 36 isolados de B. lactucae de diferentes regiões produtoras de alface no estado. Para identificação das raças foram utilizadas as cultivares diferenciadoras conforme o código Sextet. Foram identificadas três novas raças, SPBl:02, SPBl:03 e SPBl:04 com os referidos comportamentos do fungo: (63/31/19/00), (63/63/19/00) e (63/63/03/00). Os genes Dm-14, Dm-17, Dm-18, Dm-37 e Dm-38 conferem resistência a essas novas raças identificadas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sex-determining gene Mab-3 of C. elegans and the doublesex gene of Drosophila each contain a common DM domain and share a similar role. Human doublesex-related gene DMRT1 also encodes a conserved DM-related DNA-binding domain. We present here the amplification of a broad range of DM domain sequences from three fish species using degenerate PCR. Our results reveal unexpected complexity of the DM domain gene family in vertebrates. (C) 2002 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Near isogenic lines (NILs) varying for alleles for reduced height (Rht) and photoperiod insensitivity (Ppd-D1a) in a cvar Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) were compared at a field site in Berkshire, UK, but within different systems (‘organic’, O, in 2005/06, 2006/07 and 2007/08 growing seasons v. ‘conventional’, C, in 2005/06, 2006/07, 2007/08 and 2008/09). In 2007 and 2008, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) in both Maris Huntsman and Maris Widgeon backgrounds were added. The contrasting systems allowed NILs to be tested in diverse rotational and agronomic, but commercially relevant, contexts, particularly with regard to the assumed temporal distribution of nitrogen availability, and competition from weeds. For grain, nitrogen-use efficiency (NUE; grain dry matter (DM) yield/available N; where available N=fertilizer N+soil mineral N), recovery of N in the grain (grain N yield/available N), N utilization efficiency to produce grain (NUtEg; grain DM yield/above-ground crop N yield), N harvest index (grain N yield/above-ground crop N yield) and dry matter harvest index (DMHI; grain DM yield/above-ground crop DM yield) all peaked at final crop heights of 800–950 mm. Maximum NUE occurred at greater crop heights in the organic system than in the conventional system, such that even adding just a semi-dwarfing allele (Rht-D1b) to the shortest background, Mercia, reduced NUE in the organic system. The mechanism of dwarfing (gibberellin sensitive or insensitive) made little difference to the relationship between NUE and its components with crop height. For above-ground biomass: dwarfing alleles had a greater effect on DM accumulation compared with N accumulation such that all dwarfing alleles could reduce nitrogen utilization efficiency (NUtE; crop DM yield/crop N yield). This was particularly evident at anthesis in the conventional system when there was no significant penalty for severe dwarfism for N accumulation, despite a 3-tonne (t)/ha reduction in biomass compared to the tallest lines. Differences between genotypes for recovery of N in the grain were thus mostly a function of net N uptake after anthesis rather than of remobilized N. This effect was compounded as dwarfing, except when coupled with Ppd-D1a, was associated with delayed anthesis. In the organic experiments there was greater reliance on N accumulated before anthesis, and genotype effects on NUE were confounded with effects on N accumulated by weeds, which was negatively associated with crop height. Optimum height for maximizing wheat NUE and its components, as manipulated by Rht alleles, thus depend on growing system, and crop utilization (i.e. biomass or grain production).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid decline in cell-wall digestibility hinders efficient use of warm-season grasses. The objective of this study was to identify genes whose expressions are related to the slope of decline in cell-wall digestibility. Eleven guineagrass genotypes were harvested at three ages and classified according to fibre digestibility. Extreme genotypes were separated into groups with either FAST or SLOW decline in fibre digestibility. Expression of transcripts from six genes from the lignin synthesis pathway was quantified by real-time PCR. Fast decline in fibre digestibility was associated with higher DM yield after 90 d of regrowth. Apart from lower fibre digestibility and higher lignin content for the FAST group, there were no other differences between the two groups for the chemical composition of stems and leaves. Maturity affected differently the expression of two of the six genes, cinnamate 4-hydroxylase and caffeoyl-CoA O-methyltransferase (C4H and CCoAOMT). Genotypes with fast decline in fibre digestibility had greater increase in the expression of C4H and CCoAOMT from 30 to 60 d of regrowth, than genotypes with slower decline. Expression of C4H and CCoAOMT appears to be related to the decline in cell-wall digestibility with advance in maturity of guineagrass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myotonic dystrophy (DM) is caused by the expansion of a trinucleotide repeat, CTG, in the 3′ untranslated region of a protein kinase gene, DMPK. We set out to determine what effect this expanded repeat has on RNA processing. The subcellular fractionation of RNA and the separate analysis of DMPK transcripts from each allele reveals that transcripts from expanded DMPK alleles are retained within the nucleus and are absent from the cytoplasm of DM cell lines. The nuclear retention of DMPK transcripts occurs above a critical threshold between 80 and 400 CTGs. Further analysis of the nuclear RNA reveals an apparent reduction in the proportion of expansion-derived DMPK transcripts after poly(A)+ selection. Quantitative analysis of RNA also indicates that although the level of cytoplasmic DMPK transcript is altered in DM patients, the levels of transcripts from 59 and DMAHP, two genes that immediately flank DMPK, are unaffected in DM cell lines.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequences of two chloroplast photosystem genes, psaA and psbB, together comprising about 3,500 bp, were obtained for all five major groups of extant seed plants and several outgroups among other vascular plants. Strongly supported, but significantly conflicting, phylogenetic signals were obtained in parsimony analyses from partitions of the data into first and second codon positions versus third positions. In the former, both genes agreed on a monophyletic gymnosperms, with Gnetales closely related to certain conifers. In the latter, Gnetales are inferred to be the sister group of all other seed plants, with gymnosperms paraphyletic. None of the data supported the modern ‘‘anthophyte hypothesis,’’ which places Gnetales as the sister group of flowering plants. A series of simulation studies were undertaken to examine the error rate for parsimony inference. Three kinds of errors were examined: random error, systematic bias (both properties of finite data sets), and statistical inconsistency owing to long-branch attraction (an asymptotic property). Parsimony reconstructions were extremely biased for third-position data for psbB. Regardless of the true underlying tree, a tree in which Gnetales are sister to all other seed plants was likely to be reconstructed for these data. None of the combinations of genes or partitions permits the anthophyte tree to be reconstructed with high probability. Simulations of progressively larger data sets indicate the existence of long-branch attraction (statistical inconsistency) for third-position psbB data if either the anthophyte tree or the gymnosperm tree is correct. This is also true for the anthophyte tree using either psaA third positions or psbB first and second positions. A factor contributing to bias and inconsistency is extremely short branches at the base of the seed plant radiation, coupled with extremely high rates in Gnetales and nonseed plant outgroups. M. J. Sanderson,* M. F. Wojciechowski,*† J.-M. Hu,* T. Sher Khan,* and S. G. Brady

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To enhance and regulate cell affinity for poly (l-lactic acid) (PLLA) based materials, two hydrophilic ligands, poly (ethylene glycol) (PEG) and poly (l-lysine) (PLL), were used to develop triblock copolymers: methoxy-terminated poly (ethylene glycol)-block-poly (l-lactide)-block-poly (l-lysine) (MPEG-b-PLLA-b-PLL) in order to regulate protein absorption and cell adhesion. Bone marrow stromal cells (BMSCs) were cultured on different composition of MPEG-b-PLLA-b-PLL copolymer films to determine the effect of modified polymer surfaces on BMSC attachment. To understand the molecular mechanism governing the initial cell adhesion on difference polymer surfaces, the mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analysed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). It was found that down regulation of adhesion molecules was responsible for the impaired BMSC attachment on PLLA surface. MPEG-b-PLLA-b-PLL copolymer films improved significantly the cell adhesion and cytoskeleton expression by upregulation of relevant molecule genes significantly. Six adhesion genes (CDH1, ITGL, NCAM1, SGCE, COL16A1, and LAMA3) were most significantly influenced by the modified PLLA surfaces. In summary, polymer surfaces altered adhesion molecule gene expression of BMSCs, which consequently regulated cell initial attachment on modified PLLA surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The last few years have seen dramatic advances in genomics, including the discovery of a large number of non-coding and antisense transcripts. This has revolutionised our understanding of multifaceted transcript structures found within gene loci and their roles in the regulation of development, neurogenesis and other complex processes. The recent and continuing surge of knowledge has prompted researchers to reassess and further dissect gene loci. The ghrelin gene (GHRL) gives rise to preproghrelin, which in turn produces ghrelin, a 28 amino acid peptide hormone that acts via the ghrelin receptor (growth hormone secretagogue receptor/GHSR 1a). Ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH) release, appetite regulation, and cancer development. A truncated receptor splice variant, GHSR 1b, does not bind ghrelin, but dimerises with GHSR 1a, and may act as a dominant negative receptor. The gene products of ghrelin and its receptor are frequently overexpressed in human cancer While it is well known that the ghrelin axis (ghrelin and its receptor) plays a range of important functional roles, little is known about the molecular structure and regulation of the ghrelin gene (GHRL) and ghrelin receptor gene (GHSR). This thesis reports the re-annotation of the ghrelin gene, discovery of alternative 5’ exons and transcription start sites, as well as the description of a number of novel splice variants, including isoforms with a putative signal peptide. We also describe the discovery and characterisation of a ghrelin antisense gene (GHRLOS), and the discovery and expression of a ghrelin receptor (growth hormone secretagogue receptor/GHSR) antisense gene (GHSR-OS). We have identified numerous ghrelin-derived transcripts, including variants with extended 5' untranslated regions and putative secreted obestatin and C-ghrelin transcripts. These transcripts initiate from novel first exons, exon -1, exon 0 and a 5' extended 1, with multiple transcription start sites. We used comparative genomics to identify, and RT-PCR to experimentally verify, that the proximal exon 0 and 5' extended exon 1 are transcribed in the mouse ghrelin gene, which suggests the mouse and human proximal first exon architecture is conserved. We have identified numerous novel antisense transcripts in the ghrelin locus. A candidate non-coding endogenous natural antisense gene (GHRLOS) was cloned and demonstrates very low expression levels in the stomach and high levels in the thymus, testis and brain - all major tissues of non-coding RNA expression. Next, we examined if transcription occurs in the antisense orientation to the ghrelin receptor gene, GHSR. A novel gene (GHSR-OS) on the opposite strand of intron 1 of the GHSR gene was identified and characterised using strand-specific RT-PCR and rapid amplification of cDNA ends (RACE). GHSR-OS is differentially expressed and a candidate non-coding RNA gene. In summary, this study has characterised the ghrelin and ghrelin receptor loci and demonstrated natural antisense transcripts to ghrelin and its receptor. Our preliminary work shows that the ghrelin axis generates a broad and complex transcriptional repertoire. This study provides the basis for detailed functional studies of the the ghrelin and GHSR loci and future studies will be needed to further unravel the function, diagnostic and therapeutic potential of the ghrelin axis.