938 resultados para Geiger-Muller detector
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial
Resumo:
Nuclear Medicine is a medical modality of therapy and diagnostic imaging using unsealed radioactive sources for its purposes. This routine activity promotes the transit of radioactive sources for the area of installation, beyond the transit of patients injected with radioisotope, which also contribute to raising the radiometric level of environment. As a consequence, it has exposured workers and public individuals to the ionizing radiation. There are protective mechanisms of radiation exposure, personal protective equipments, and measurement planes established in standard measurement at certain points of the environment in order to identify any increase in radiometric levels and \ or contamination, but do not cover the entire space occupied by workers and patients. To accomplish with the individual dose limits established by the National Commission of Nuclear Energy, it is interesting if there is an individualized classification for each Nuclear Medicine service. This work aimed to promote an analysis of the radiometric level distribution across the extent of the Technical Nuclear Medicine Sector of Hospital of the Botucatu Medical School, and produce a spatial map to identify locations with higher exposure rate to the ionizing radiation, can be used as a risk map to assist the Occupationally Exposed Individuals (IOE). To perform the radiometric levels checking it was used a digital Geiger-Muller detector available in the sector, due to its practicality compared to other detectors. Measurements were carried out at four different times for all days of the week, at points strategically established to cover all the installation
Resumo:
Nuclear medicine uses non-sealed sources for exams and treatments, because the movement of these sources, source of patients injected or not, involve a wide range of environmental radiometric levels. To better control of these levels this study was aimed at monitoring points strategically distributed in all environments Sector Technical Nuclear Medicine, Hospital of the Botucatu Medical School, performing two measurements at random times daily for a period of three months, sampling the normal routine of the sector. The detector Geiger-Muller was used for the acquisition of exposure rates of the points, efficiency and reprodutibility test have shown good performance of this equipment for this purpose. The results allowed to make a projection of annual dose for each environment indicating higher risks for Occupationally Exposed Individuals as well as Public Individuals compared with the limits established by the National Commission of Nuclear Energy. Was developed a spatial map of dose that can be used as a visual warning to the regions with the highest exposure to ionizing radiation, enabling reduced risk of a potential exposure
Resumo:
A quantitative study was made about the effects caused by ionizing irradiation on materials used for dental restoration (amalgams, compound resins and compomere), aiming to alleviate in bearers of head and neck cancer, the possible harmful effects of radiotherapy perceived when the repaired teething is within the radiation field. Research also encourages further studies for new alternative materials to be used in dental repair of patients submitted to radiotherapy for head and neck cancer. Test samples were submitted to a gamma radiation beam coming from a cobalt-therapy source and analyzed according to the X-ray fluorescence technique, comparing the chemical composition of the samples before and after irradiation. Radiation detectors such as an ionization chamber and a Geiger-Muller were used to measure the rate of residual dose. Gamma spectrometry with Nal detectors was also performed on the same samples. Results showed that there was no significant change in the chemical composition and that at post-irradiation, samples did not exhibit radiation emission, that is to say they had not become radioactive.
Resumo:
After the discovery of ionizing radiation, its applications in various fields of science began to take significant proportions. In the case of medicine, there are the application areas in radiotherapy, diagnostic radiology and nuclear medicine. It was then necessary to create the field of radiological protection to establish the conditions necessary for the safe use of such ionizing radiation. Apply knowledge obtained during the graduation stage and in the practice of radiological protection in the areas of nuclear medicine and diagnostic radiology. In the area of nuclear medicine, tests were made in the Geiger-Muller counters (GM) and the dose calibrator (curiometer), the monitoring tests of radiation, waste management, clean of the Therapeutic room and testing the quality control of gamma-chambers. In the area of radiology, were performed tests of quality control equipment for conventional X-ray equipment and x-ray fluoroscopy, all following the rules of the National Health Surveillance Agency (ANVISA), and reporting of tests. The routine developed in the fields of nuclear medicine in hospitals has proved very useful, since the quality control of GM counters contribute to the values of possible contamination are more reliable. The control of dose calibrator enables the patient not to receive different doses of the recommended amounts, which prevents the repetition of tests and unnecessary exposure to radiation. The management of waste following the rules and laws established and required for its management. Tests for quality control of gamma chambers help to evaluate its medical performance through image. In part of diagnostic radiology, tests for quality control are performed in order to verify that the equipment is acceptable for usage or if repairs are needed. The knowledge acquired at the internship consolidated the learning of graduation course
Resumo:
Includes bibliographical references.
Resumo:
A method is developed to search for air showers initiated by photons using data recorded by the surface detector of the Auger Observatory. The approach is based on observables sensitive to the longitudinal shower development, the signal risetime and the curvature of the shower front. Applying this method to the data, tipper limits on the flux of photons of 3.8 x 10(-3), 2.5 x 10(-3), and 2.2 x 10(-3) km(-2) sr(-1) yr(-1) above 10(19) eV, 2 x 10(19) eV, and 4 x 10(19) eV are derived, with corresponding limits on the fraction of photons being 2.0%, 5.1%, and 31% (all limits at 95% c.l.). These photon limits disfavor certain exotic models of sources of cosmic rays. The results also show that the approach adopted by the Auger Observatory to calibrate the shower energy is not strongly biased by a contamination from photons. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3 x 10(18) eV, for all zenith angles between 0 degrees and 60 degrees, independently of the position of the impact point and of the mass of the primary particle. In these range of energies and angles, the exposure of the surface array can be determined purely on the basis of the geometrical acceptance. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Atmospheric parameters, Such as pressure (P), temperature (T) and density (rho proportional to P/T), affect the development of extensive air showers initiated by energetic cosmic rays. We have Studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a similar to 10% seasonal modulation and similar to 2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of P and rho. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The ""hybrid"" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions. (C) 2010 Elsevier B.V All rights reserved.
Resumo:
We report on operational experience with an experimental performance of the SLD barrel Cherenkov Ring Imaging Detector from the 1992 and 1993 physics runs. The liquid (C6F14) and gas (C5F12) radiator recirculation systems have performed well, and the drift gas supply system has operated successfully with TMAE for three years. Cherenkov rings have been observed from both the liquid and gas radiators. The number and angular resolution of Cherenkov photons have been measured, and found to be close to design specifications.
Resumo:
We describe the design and operation of the fluid delivery, monitor and control systems for the SLD barrel Cherenkov Ring Imaging Detector (CRID). The systems deliver drift gas (C2H6+TMAE), radiator gas (C5F12+N2) and radiator liquid (C6F14). MeasUred critical quantities such as electron lifetime in the drift gas and ultra-violet (UV) transparencies of the radiator fluids, together with the operational experience, are also reported.
Resumo:
This paper presents a model to estimate travel time using cumulative plots. Three different cases considered are i) case-Det, for only detector data; ii) case-DetSig, for detector data and signal controller data and iii) case-DetSigSFR: for detector data, signal controller data and saturation flow rate. The performance of the model for different detection intervals is evaluated. It is observed that detection interval is not critical if signal timings are available. Comparable accuracy can be obtained from larger detection interval with signal timings or from shorter detection interval without signal timings. The performance for case-DetSig and for case-DetSigSFR is consistent with accuracy generally more than 95% whereas, case-Det is highly sensitive to the signal phases in the detection interval and its performance is uncertain if detection interval is integral multiple of signal cycles.