863 resultados para Gaussian kernel


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent focus of flood frequency analysis (FFA) studies has been on development of methods to model joint distributions of variables such as peak flow, volume, and duration that characterize a flood event, as comprehensive knowledge of flood event is often necessary in hydrological applications. Diffusion process based adaptive kernel (D-kernel) is suggested in this paper for this purpose. It is data driven, flexible and unlike most kernel density estimators, always yields a bona fide probability density function. It overcomes shortcomings associated with the use of conventional kernel density estimators in FFA, such as boundary leakage problem and normal reference rule. The potential of the D-kernel is demonstrated by application to synthetic samples of various sizes drawn from known unimodal and bimodal populations, and five typical peak flow records from different parts of the world. It is shown to be effective when compared to conventional Gaussian kernel and the best of seven commonly used copulas (Gumbel-Hougaard, Frank, Clayton, Joe, Normal, Plackett, and Student's T) in estimating joint distribution of peak flow characteristics and extrapolating beyond historical maxima. Selection of optimum number of bins is found to be critical in modeling with D-kernel.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An improved color video super-resolution technique using kernel regression and fuzzy enhancement is presented in this paper. A high resolution frame is computed from a set of low resolution video frames by kernel regression using an adaptive Gaussian kernel. A fuzzy smoothing filter is proposed to enhance the regression output. The proposed technique is a low cost software solution to resolution enhancement of color video in multimedia applications. The performance of the proposed technique is evaluated using several color videos and it is found to be better than other techniques in producing high quality high resolution color videos

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Support Vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights and threshold such as to minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by $k$--means clustering and the weights are found using error backpropagation. We consider three machines, namely a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the US postal service database of handwritten digits, the SV machine achieves the highest test accuracy, followed by the hybrid approach. The SV approach is thus not only theoretically well--founded, but also superior in a practical application.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We generalize the popular ensemble Kalman filter to an ensemble transform filter, in which the prior distribution can take the form of a Gaussian mixture or a Gaussian kernel density estimator. The design of the filter is based on a continuous formulation of the Bayesian filter analysis step. We call the new filter algorithm the ensemble Gaussian-mixture filter (EGMF). The EGMF is implemented for three simple test problems (Brownian dynamics in one dimension, Langevin dynamics in two dimensions and the three-dimensional Lorenz-63 model). It is demonstrated that the EGMF is capable of tracking systems with non-Gaussian uni- and multimodal ensemble distributions. Copyright © 2011 Royal Meteorological Society

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this paper Is lo discuss the influence of the selection of the interpolation kernel in the accuracy of the modeling of the internal viscous dissipation in Tree surface Hows, Simulations corresponding to a standing wave* for which an analytic solution available, are presented. Wendland and renormalized Gaussian kernels are considered. The differences in the flow pattern* and Internal dissipation mechanisms are documented for a range of Reynolds numbers. It is shown that the simulations with Wendland kernels replicate the dissipation mechanisms more accurately than those with a renormalized Gaussian kernel. Although some explanations are hinted we have Tailed to clarify which the core structural reasons for Mich differences are*

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper a real-time vision based power line extraction solution is investigated for active UAV guidance. The line extraction algorithm starts from ridge points detected by steerable filters. A collinear line segments fitting algorithm is followed up by considering global and local information together with multiple collinear measurements. GPU boosted algorithm implementation is also investigated in the experiment. The experimental result shows that the proposed algorithm outperforms two baseline line detection algorithms and is able to fitting long collinear line segments. The low computational cost of the algorithm make suitable for real-time applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present a fast power line detection and localisation algorithm as well as propose a high-level guidance architecture for active vision-based Unmanned Aerial Vehicle (UAV) guidance. The detection stage is based on steerable filters for edge ridge detection, followed by a line fitting algorithm to refine candidate power lines in images. The guidance architecture assumes an UAV with an onboard Gimbal camera. We first control the position of the Gimbal such that the power line is in the field of view of the camera. Then its pose is used to generate the appropriate control commands such that the aircraft moves and flies above the lines. We present initial experimental results for the detection stage which shows that the proposed algorithm outperforms two state-of-the-art line detection algorithms for power line detection from aerial imagery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Core Vector Machine(CVM) is suitable for efficient large-scale pattern classification. In this paper, a method for improving the performance of CVM with Gaussian kernel function irrespective of the orderings of patterns belonging to different classes within the data set is proposed. This method employs a selective sampling based training of CVM using a novel kernel based scalable hierarchical clustering algorithm. Empirical studies made on synthetic and real world data sets show that the proposed strategy performs well on large data sets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses a method for scaling SVM with Gaussian kernel function to handle large data sets by using a selective sampling strategy for the training set. It employs a scalable hierarchical clustering algorithm to construct cluster indexing structures of the training data in the kernel induced feature space. These are then used for selective sampling of the training data for SVM to impart scalability to the training process. Empirical studies made on real world data sets show that the proposed strategy performs well on large data sets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose to employ bilateral filters to solve the problem of edge detection. The proposed methodology presents an efficient and noise robust method for detecting edges. Classical bilateral filters smooth images without distorting edges. In this paper, we modify the bilateral filter to perform edge detection, which is the opposite of bilateral smoothing. The Gaussian domain kernel of the bilateral filter is replaced with an edge detection mask, and Gaussian range kernel is replaced with an inverted Gaussian kernel. The modified range kernel serves to emphasize dissimilar regions. The resulting approach effectively adapts the detection mask according as the pixel intensity differences. The results of the proposed algorithm are compared with those of standard edge detection masks. Comparisons of the bilateral edge detector with Canny edge detection algorithm, both after non-maximal suppression, are also provided. The results of our technique are observed to be better and noise-robust than those offered by methods employing masks alone, and are also comparable to the results from Canny edge detector, outperforming it in certain cases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Em muitas representações de objetos ou sistemas físicos se faz necessário a utilização de técnicas de redução de dimensionalidade que possibilitam a análise dos dados em baixas dimensões, capturando os parâmetros essenciais associados ao problema. No contexto de aprendizagem de máquina esta redução se destina primordialmente à clusterização, reconhecimento e reconstrução de sinais. Esta tese faz uma análise meticulosa destes tópicos e suas conexões que se encontram em verdadeira ebulição na literatura, sendo o mapeamento de difusão o foco principal deste trabalho. Tal método é construído a partir de um grafo onde os vértices são os sinais (dados do problema) e o peso das arestas é estabelecido a partir do núcleo gaussiano da equação do calor. Além disso, um processo de Markov é estabelecido o que permite a visualização do problema em diferentes escalas conforme variação de um determinado parâmetro t: Um outro parâmetro de escala, Є, para o núcleo gaussiano é avaliado com cuidado relacionando-o com a dinâmica de Markov de forma a poder aprender a variedade que eventualmente seja o suporte do dados. Nesta tese é proposto o reconhecimento de imagens digitais envolvendo transformações de rotação e variação de iluminação. Também o problema da reconstrução de sinais é atacado com a proposta de pré-imagem utilizando-se da otimização de uma função custo com um parâmetro regularizador, γ, que leva em conta também o conjunto de dados iniciais.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blind deconvolution is studied in the underwater acoustic channel context, by time-frequency (TF) processing. The acoustic propagation environment is modelled by ray tracing and mathematically described by a multipath propagation channel. Representation of the received signal by means of a signal-dependent TF distribution (radially Gaussian kernel distribution) allowed to visualize the resolved replicas of the emitted signal, while signi cantly attenuating the inherent interferences of classic quadratic TF distributions. The source signal instantaneous frequency estimation was the starting point for both source and channel estimation. Source signature estimation was performed by either TF inversion, based on the Wigner-Ville distribution of the received signal, or a subspace- -based method. The channel estimate was obtained either via a TF formulation of the conventional matched- lter, or via matched- - ltering with the previously obtained source estimate. A shallow water realistic scenario is considered, comprising a 135-m depth water column and an acoustic source located at 90-m depth and 5.6-km range from the receiver. For the corresponding noiseless simulated data, the quality of the best estimates was 0.856 for the source signal, and 0.9664 and 0.9996 for the amplitudes and time-delays of the impulse response, respectively. Application of the proposed deconvolution method to real data of the INTIMATE '96 sea trial conduced to source and channel estimates with the quality of 0.530 and 0.843, respectively. TF processing has proved to remove the typical ill-conditioning of single sensor deterministic deconvolution techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A procedure (concurrent multiplicative-additive objective analysis scheme [CMA-OAS]) is proposed for operational rainfall estimation using rain gauges and radar data. On the basis of a concurrent multiplicative-additive (CMA) decomposition of the spatially nonuniform radar bias, within-storm variability of rainfall and fractional coverage of rainfall are taken into account. Thus both spatially nonuniform radar bias, given that rainfall is detected, and bias in radar detection of rainfall are handled. The interpolation procedure of CMA-OAS is built on Barnes' objective analysis scheme (OAS), whose purpose is to estimate a filtered spatial field of the variable of interest through a successive correction of residuals resulting from a Gaussian kernel smoother applied on spatial samples. The CMA-OAS, first, poses an optimization problem at each gauge-radar support point to obtain both a local multiplicative-additive radar bias decomposition and a regionalization parameter. Second, local biases and regionalization parameters are integrated into an OAS to estimate the multisensor rainfall at the ground level. The procedure is suited to relatively sparse rain gauge networks. To show the procedure, six storms are analyzed at hourly steps over 10,663 km2. Results generally indicated an improved quality with respect to other methods evaluated: a standard mean-field bias adjustment, a spatially variable adjustment with multiplicative factors, and ordinary cokriging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We obtain explicit formulas for the eigenvalues of integral operators generated by continuous dot product kernels defined on the sphere via the usual gamma function. Using them, we present both, a procedure to describe sharp bounds for the eigenvalues and their asymptotic behavior near 0. We illustrate our results with examples, among them the integral operator generated by a Gaussian kernel. Finally, we sketch complex versions of our results to cover the cases when the sphere sits in a Hermitian space.