973 resultados para Gaussian Probability Distribution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the statistical properties of the local density of states of a one-dimensional Dirac equation in the presence of various types of disorder with Gaussian white-noise distribution. It is shown how either the replica trick or supersymmetry can be used to calculate exactly all the moments of the local density of states.' Careful attention is paid to how the results change if the local density of states is averaged over atomic length scales. For both the replica trick and supersymmetry the problem is reduced to finding the ground state of a zero-dimensional Hamiltonian which is written solely in terms of a pair of coupled spins which are elements of u(1, 1). This ground state is explicitly found for the particular case of the Dirac equation corresponding to an infinite metallic quantum wire with a single conduction channel. The calculated moments of the local density of states agree with those found previously by Al'tshuler and Prigodin [Sov. Phys. JETP 68 (1989) 198] using a technique based on recursion relations for Feynman diagrams. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let {μ(i)t}t≥0 ( i=1,2 ) be continuous convolution semigroups (c.c.s.) of probability measures on Aff(1) (the affine group on the real line). Suppose that μ(1)1=μ(2)1 . Assume furthermore that {μ(1)t}t≥0 is a Gaussian c.c.s. (in the sense that its generating distribution is a sum of a primitive distribution and a second-order differential operator). Then μ(1)t=μ(2)t for all t≥0 . We end up with a possible application in mathematical finance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the direct adaptive inverse control of nonlinear multivariable systems with different delays between every input-output pair. In direct adaptive inverse control, the inverse mapping is learned from examples of input-output pairs. This makes the obtained controller sub optimal, since the network may have to learn the response of the plant over a larger operational range than necessary. Moreover, in certain applications, the control problem can be redundant, implying that the inverse problem is ill posed. In this paper we propose a new algorithm which allows estimating and exploiting uncertainty in nonlinear multivariable control systems. This approach allows us to model strongly non-Gaussian distribution of control signals as well as processes with hysteresis. The proposed algorithm circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We establish a connection between the simple harmonic oscillator and a two-level atom interacting with resonant, quantized cavity and strong driving fields, which suggests an experiment to measure the harmonic-oscillator's probability distribution function. To achieve this, we calculate the Autler-Townes spectrum by coupling the system to a third level. We find that there are two different regions of the atomic dynamics depending on the ratio of the: Rabi frequency Omega (c) of the cavity field to that of the Rabi frequency Omega of the driving field. For Omega (c)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This technical report describes the PDFs which have been implemented to model the behaviours of certain parameters of the Repeater-Based Hybrid Wired/Wireless PROFIBUS Network Simulator (RHW2PNetSim) and Bridge-Based Hybrid Wired/Wireless PROFIBUS Network Simulator (BHW2PNetSim).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power law distributions, a well-known model in the theory of real random variables, characterize a wide variety of natural and man made phenomena. The intensity of earthquakes, the word frequencies, the solar ares and the sizes of power outages are distributed according to a power law distribution. Recently, given the usage of power laws in the scientific community, several articles have been published criticizing the statistical methods used to estimate the power law behaviour and establishing new techniques to their estimation with proven reliability. The main object of the present study is to go in deep understanding of this kind of distribution and its analysis, and introduce the half-lives of the radioactive isotopes as a new candidate in the nature following a power law distribution, as well as a \canonical laboratory" to test statistical methods appropriate for long-tailed distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The co-polar correlation coefficient (ρhv) has many applications, including hydrometeor classification, ground clutter and melting layer identification, interpretation of ice microphysics and the retrieval of rain drop size distributions (DSDs). However, we currently lack the quantitative error estimates that are necessary if these applications are to be fully exploited. Previous error estimates of ρhv rely on knowledge of the unknown "true" ρhv and implicitly assume a Gaussian probability distribution function of ρhv samples. We show that frequency distributions of ρhv estimates are in fact highly negatively skewed. A new variable: L = -log10(1 - ρhv) is defined, which does have Gaussian error statistics, and a standard deviation depending only on the number of independent radar pulses. This is verified using observations of spherical drizzle drops, allowing, for the first time, the construction of rigorous confidence intervals in estimates of ρhv. In addition, we demonstrate how the imperfect co-location of the horizontal and vertical polarisation sample volumes may be accounted for. The possibility of using L to estimate the dispersion parameter (µ) in the gamma drop size distribution is investigated. We find that including drop oscillations is essential for this application, otherwise there could be biases in retrieved µ of up to ~8. Preliminary results in rainfall are presented. In a convective rain case study, our estimates show µ to be substantially larger than 0 (an exponential DSD). In this particular rain event, rain rate would be overestimated by up to 50% if a simple exponential DSD is assumed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper derives both lower and upper bounds for the probability distribution function of stationary ACD(p, q) processes. For the purpose of illustration, I specialize the results to the main parent distributions in duration analysis. Simulations show that the lower bound is much tighter than the upper bound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two stochastic models have been fitted to daily rainfall data for an interior station of Brazil. Of these two models, the results show a better fit to describe the data, by truncated negative probability model in comparison with Markov chain probability model. Kolmogorov-Smirnov test is applied for significance for these models. © 1983 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes an adaptive algorithm for clustering cumulative probability distribution functions (c.p.d.f.) of a continuous random variable, observed in different populations, into the minimum homogeneous clusters, making no parametric assumptions about the c.p.d.f.’s. The distance function for clustering c.p.d.f.’s that is proposed is based on the Kolmogorov–Smirnov two sample statistic. This test is able to detect differences in position, dispersion or shape of the c.p.d.f.’s. In our context, this statistic allows us to cluster the recorded data with a homogeneity criterion based on the whole distribution of each data set, and to decide whether it is necessary to add more clusters or not. In this sense, the proposed algorithm is adaptive as it automatically increases the number of clusters only as necessary; therefore, there is no need to fix in advance the number of clusters. The output of the algorithm are the common c.p.d.f. of all observed data in the cluster (the centroid) and, for each cluster, the Kolmogorov–Smirnov statistic between the centroid and the most distant c.p.d.f. The proposed algorithm has been used for a large data set of solar global irradiation spectra distributions. The results obtained enable to reduce all the information of more than 270,000 c.p.d.f.’s in only 6 different clusters that correspond to 6 different c.p.d.f.’s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We obtain the exact asymptotic result for the disorder-averaged probability distribution function for a random walk in a biased Sinai model and show that it is characterized by a creeping behavior of the displacement moments with time, similar to v(mu n), where mu <1 is dimensionless mean drift. We employ a method originated in quantum diffusion which is based on the exact mapping of the problem to an imaginary-time Schrodinger equation. For nonzero drift such an equation has an isolated lowest eigenvalue separated by a gap from quasicontinuous excited states, and the eigenstate corresponding to the former governs the long-time asymptotic behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem addressed concerns the determination of the average numberof successive attempts of guessing a word of a certain length consisting of letters withgiven probabilities of occurrence. Both first- and second-order approximations to a naturallanguage are considered. The guessing strategy used is guessing words in decreasing orderof probability. When word and alphabet sizes are large, approximations are necessary inorder to estimate the number of guesses. Several kinds of approximations are discusseddemonstrating moderate requirements regarding both memory and central processing unit(CPU) time. When considering realistic sizes of alphabets and words (100), the numberof guesses can be estimated within minutes with reasonable accuracy (a few percent) andmay therefore constitute an alternative to, e.g., various entropy expressions. For manyprobability distributions, the density of the logarithm of probability products is close to anormal distribution. For those cases, it is possible to derive an analytical expression for theaverage number of guesses. The proportion of guesses needed on average compared to thetotal number decreases almost exponentially with the word length. The leading term in anasymptotic expansion can be used to estimate the number of guesses for large word lengths.Comparisons with analytical lower bounds and entropy expressions are also provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. METHODS: Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers. RESULTS: The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice. CONCLUSIONS: The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. METHODS: Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers. RESULTS: The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice. CONCLUSIONS: The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.