Uniqueness of the Embedding Continuous Convolution Semigroup of a Gaussian Probability Measure on the Affine Group and an Application in Mathematical Finance


Autoria(s): Neuenschwander, Daniel
Data(s)

2013

Resumo

Let {μ(i)t}t≥0 ( i=1,2 ) be continuous convolution semigroups (c.c.s.) of probability measures on Aff(1) (the affine group on the real line). Suppose that μ(1)1=μ(2)1 . Assume furthermore that {μ(1)t}t≥0 is a Gaussian c.c.s. (in the sense that its generating distribution is a sum of a primitive distribution and a second-order differential operator). Then μ(1)t=μ(2)t for all t≥0 . We end up with a possible application in mathematical finance.

Formato

application/pdf

Identificador

http://boris.unibe.ch/58672/1/art%253A10.1007%252Fs00605-013-0490-5.pdf

Neuenschwander, Daniel (2013). Uniqueness of the Embedding Continuous Convolution Semigroup of a Gaussian Probability Measure on the Affine Group and an Application in Mathematical Finance. Monatshefte für Mathematik, 171(1), pp. 91-101. Springer-Verlag Wien 10.1007/s00605-013-0490-5 <http://dx.doi.org/10.1007/s00605-013-0490-5>

doi:10.7892/boris.58672

info:doi:10.1007/s00605-013-0490-5

urn:issn:0026-9255

Idioma(s)

eng

Publicador

Springer-Verlag Wien

Relação

http://boris.unibe.ch/58672/

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Neuenschwander, Daniel (2013). Uniqueness of the Embedding Continuous Convolution Semigroup of a Gaussian Probability Measure on the Affine Group and an Application in Mathematical Finance. Monatshefte für Mathematik, 171(1), pp. 91-101. Springer-Verlag Wien 10.1007/s00605-013-0490-5 <http://dx.doi.org/10.1007/s00605-013-0490-5>

Palavras-Chave #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed