914 resultados para Gastrointestinal Diseases -- chemically induced
Resumo:
Purpose: This study was designed to test the activity and feasibility of an all-oral regimen of levo-leucovorin and doxifluridine (dFUR) in the treatment of advanced colorectal cancer and to establish whether the pharmacokinetics of dFUR and fluorouracil (FU) are affected by demographic and/or biologic parameters. Materials and Methods: One hundred eight patients with histologically proven colorectal cancer received orally administered levo-leucovorin 25 mg followed 2 hours later by dFUR 1,200 mg/m2 on days 1 to 5, with the cycle being repeated every 10 days. Results: Among 62 previously untreated patients, two complete responses (CRs) and 18 partial responses (PRs) were observed (overall response rate, 32%; 95% confidence interval, 21% to 45%). The median response duration was 4 months (range, 2 to 13) and the median survival time, 14 months. Among 46 pretreated patients, there were three CRs and three PRs (response rate, 13%; 95% confidence interval, 5% to 26%). In this group of patients, the median response duration was 4 months (range, 1 to 12) and the median survival time, 12 months. No toxic deaths were observed. The only World Health Organization (WHO) grade 3 to 4 side effect was diarrhea (32 patients). Conclusion: This regimen is active in previously untreated colorectal cancer patients and combines good compliance with safety. Limited but definite efficacy was also detected in the patients previously treated with FU, which suggests incomplete cross- resistance between the two drugs. The pharmacokinetic results suggest that the conversion rate of dFUR to FU increases between days 1 and 5, but that FU levels remain low in comparison to those measured after classical FU therapy. Under the experimental conditions used in this study, the interpatient variability of pharmacokinetic parameters remains largely unexplained by the tested variables.
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
Propylthiouracil (PTU) is known to induce antineutrophil cytoplasmatic antibody (ANCA) seropositivity; however, small vessel vasculitis (SVV) with pulmonary and renal involvement is rare. We present the case of an 81-year-old woman on PTU treatment due to toxic nodular goitre who developed alveolar hemorrhage and rapidly progressive glomerulonephritis. The authors highlight the importance of early recognising drug-induced pulmonary-renal syndrome (PRS) in order to avoid unnecessary tests, a delay in the diagnosis and evolution to end-stage kidney disease or life-threatening conditions.
Resumo:
In previous work we found that mezerein, a C kinase activator, as well as basic fibroblast growth factor (FGF-2) induce demyelination and partial oligodendrocyte dedifferentiation in highly differentiated aggregating brain cell cultures. Here we show that following protein kinase C activator-induced demyelination, effective remyelination occurs. We found that mezerein or FGF-2 caused a transient increase in DNA synthesis following a pronounced decrease of the myelin markers myelin basic protein and 2',3'-cyclic nucleotide 3'-phosphohydrolase. Both oligodendrocytes and astrocytes were involved in this mitogenic response. Within 17 days after demyelination, myelin was restored to the level of the untreated controls. Transient mitotic activity was indispensable for remyelination. The present results suggest that myelinating oligodendrocytes retain the capacity to reenter the cell cycle, and that this plasticity is important for the regeneration of the oligodendrocyte lineage and remyelination. Although it cannot be excluded that a quiescent population of oligodendrocyte precursor cells was present in the aggregates and able to proliferate, differentiate and remyelinate, we could not find evidence supporting this view.
Resumo:
A variety of chemicals can adversely affect the immune system and influence tumor development. The modifying potential of chemical carcinogens on the lymphoid organs and cytokine production of rats submitted to a medium-term initiation-promotion bioassay for carcinogenesis was investigated. Male Wistar rats were sequentially initiated with N-nitrosodiethylamine (DEN), N-methyl-N-nitrosourea (MNU), N-butyl-N-(4hydroxybutyl)nitrosamine (BBN), dihydroxy-di-n-propylnitrosamine (DHPN), and 1,2-dimethylhydrazine (DMH) during 4 weeks. Two initiated groups received phenobarbital (PB) or 2-acetyl amino fluorene (2-AAF) for 25 weeks and two noninitiated groups received only PB or 2-AAF. A nontreated group was used as control. Lymphohematopoietic organs, liver, kidneys, lung, intestines, and Zymbal's gland were removed for histological analysis. Interleukin (IL)-2, IL-12, interferon gamma (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), IL-10, and transforming growth factor betal (TGF-beta1) levels were determined by ELISA in spleen cell culture supernatants. At the fourth week, exposure to the initiating carcinogens resulted in cell depletion of the thymus, spleen and bone marrow, and impairment of IL-2, IL-12, and IFN-gamma production. However, at the 30th week, no important alterations were observed both in lymphoid organs and cytokine production in the different groups. The results indicate that the initiating carcinogens used in the present protocol exert toxic effects on the lymphoid organs and affect the production of cytokines at the initiation step of carcinogenesis. This early and reversible depression of the immune surveillance may contribute to the survival of initiated cells facilitating the development of future neoplasia. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The present study aimed to estimate the number of CD8(+) T and natural killer (NK) infiltrating cells and the expression of interleukin-10 (IL-10) and transforming growth factor beta 1 (TGF-beta1) in chemically induced neoplasms in an initiation-promotion bioassay for carcinogenesis. Male Wistar rats were treated with N-nitrosodiethylamine, N-methyl-N-nitrosourea, N-butyl-N-(4-hydroxybutyl) nitrosamine, dihydroxy-di-N-propylnitrosamine, and 1,2-dimethylhydrazine for 4 weeks. Two groups were subsequently exposed through diet to phenobarbital (0.05%) or 2-acetylaminofluorene (0.01%) for 25 weeks. An untreated group was used as a control. Immune cells and cytokines were immunohistochemically evaluated in neoplasms and in surrounding normal tissues at the liver, kidneys, lung, and small and large intestines. When compared to the respective normal tissues, an increased number of NK cells was verified infiltrating the colon, lung, and kidney neoplasms, while the number of CD8+ T cells decreased in the intestine and lung neoplasms. Expression of IL-10 was found mainly in kidney tumors. TGF-beta1 was expressed mainly in the liver and kidneys tumors. The results indicate that the differential occurrence of immune cells between neoplastic and normal tissues could be dependent upon tumor microenvironment.
Resumo:
Several animal studies have shown that supplementation with specific strains of lactic acid bacteria could prevent the establishment, growth, and metastasis of transplantable and chemically induced tumors. The goal of this study was to determine the effect of Enterococcus faecium CRL 183 on the incidence of colorectal tumors induced experimentally by dimethylhydrazine (DMH). We used thirty 4-week old male Wistar rat. The animals belonging to the DMH groups were injected s.c 20 mg/kg body weight of 1,2 dimethylhydrazine and 1 mM EDTA (pH 6.5), in a weekly dose, for 14 weeks. Three groups were used: (1) Control (not initiated); (2) Initiated with DMH; (3) Initiated with DMH + intake of E. faecium CRL 183. At the end of the 42nd week, all the animals were euthanized; the colons were removed and analyzed histologically. All the groups were compared histologically and IL-4, IFN-gamma and TNF-alpha cytokines. The control group did not develop pre-neoplastic lesions. The E. faecium CRL 183-DMH group showed a 50% inhibition in incidence in average number of tumors (P < 0.001), reduced the formation of ACF (P < 0.001), the lowest number of adenocarcinoma being found in this group (P < 0.001) and enhanced the immune response by increasing IL-4, IFN-gamma and TNF-alpha (P < 0.001) when compared with the DMH group.
Resumo:
beta-Glucan (BG) was tested in vitro to determine its potential clastogenic and/or anti-clastogenic activity, and attempts were made to elucidate its possible mechanism of action by using combinations with an inhibitor of DNA polymerase. The study was carried out on cells deficient (CHO-k1) and cells proficient (HTC) in phases I and II enzymes, and the DNA damage was assessed by the chromosomal aberration assay. BG did not show a clastogenic effect, but was anti-clastogenic in both cell lines used, and at all concentrations tested (2.5, 5 and 10 mg/mL) in combination with damage inducing agents (methylmethane sulfonate in cell line CHO-k1, and methylmethane sulfonate or 2-aminoanthracene in cell line HTC). BG also showed a protective effect in the presence of a DNA polymerase beta inhibitor (cytosine arabinoside-3-phosphate, Ara-C), demonstrating that BG does not act through an anti-mutagenic mechanism of action involving DNA polymerase beta.
Resumo:
beta-Glucans (BGs) are polysaccharides that are found in the cell walls of organisms such as bacteria, fungi, and some cereals. The objective of the present study was to investigate the genotoxic and antigenotoxic effects of BG extracted from the mushroom Agaricus brasiliensis (=Agaricus blazei Murrill ss. Heinemann). The mutagenic activity of BG was tested in single-cell gel electrophoresis assays with human peripheral lymphocytes. In addition, the protective effects against the cooked food mutagen 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) and (+/-)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), which is the main metabolite of B[a]P, and against ROS (H2O2)-induced DNA damage, were studied. The results showed that the compound itself was devoid of mutagenic activity, and that a significant dose-dependent protective effect against damage induced by hydrogen peroxide and Trp-P-2 occurred in the dose range 20-80 mu g/ml. To investigate the prevention of Trp-P-2-induced DNA damage, a binding assay was carried out to determine whether BG inactivates the amine via direct binding. Since no such interactions were observed, it is likely that BG interacts with enzymes involved in the metabolism of the amine.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Lycopene is a natural pigment synthesized by plants and microorganisms, and it is mainly found in tomatoes. It is an acyclic isomer of P-carotene and one of the most potent antioxidants. Several studies have demonstrated the ability of lycopene to prevent chemically induced DNA damage; however, the mechanisms involved are still not clear. In the present study, we investigated the antigenotoxic/antimutagenic effects of lycopene in Chinese Hamster Ovary Cells (CHO) treated with hydrogen peroxide, methylmethanesulphonate (MMS), or 4-nitroquinoline-1-oxide (4-NQO). Lycopene (97%), at final concentrations of 10, 25, and 50 M, was tested under three different protocols: before, simultaneously, and after the treatment with the mutagens. Comet and cytokinesis-block micronucleus assays were used to evaluate the level of DNA damage. Data showed that lycopene reduced the frequency of micronucleated cells induced by the three mutagens. However, this chemopreventive activity was dependent on the concentrations and treatment schedules used. Similar results were observed in the comet assay, although some enhancements of primary DNA damage were detected when the carotenoid was administered after the mutagens. In conclusion, our findings confirmed the chemopreventive activity of lycopene, and showed that this effect occurs under different mechanisms. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Background: Ginkgo biloba extract (GbE) is used extensively by breast cancer patients undergoing treatment with Tamoxifen (TAM). Thus, the present study investigated the effects of GbE in female Sprague-Dawley (SD) rats bearing chemically-induced mammary tumors and receiving TAM.Methods: Animals bearing mammary tumors (≥1 cm in diameter) were divided into four groups: TAM [10 mg/kg, intragastrically (i.g.)], TAM plus GbE [50 and 100 mg/kg, intraperitoneally (i.p.)] or an untreated control group. After 4 weeks, the therapeutic efficacy of the different treatments was evaluated by measuring the tumor volume (cm3) and the proportions of each tumor that were alive, necrotic or degenerative (mm2). In addition, labeling indexes (LI%) were calculated for cell proliferation (PCNA LI%) and apoptosis (cleaved caspase-3 LI%), expression of estrogen receptor-alpha (ER-α) and p63 biomarkers.Results: Overall, the tumor volume and the PCNA LI% within live tumor areas were reduced by 83% and 99%, respectively, in all TAM-treated groups when compared to the untreated control group. GbE treatment (100 mg/kg) reduced the proportions of live (24.8%) and necrotic areas (2.9%) (p = 0.046 and p = 0.038, respectively) and significantly increased the proportion of degenerative areas (72.9%) (p = 0.004) in mammary tumors when compared to the group treated only with TAM. The expression of ER-α, p63 and cleaved caspase-3 in live tumor tissues was not modified by GbE treatment.Conclusions: Co-treatment with 100 mg/kg GbE presented a slightly beneficial effect on the therapeutic efficacy of TAM in female SD rats bearing mammary tumors. © 2013 Dias et al.; licensee BioMed Central Ltd.
Resumo:
Background. Characterization of novel rodent models for prostate cancer studies requires evaluation of either spontaneous and carcinogen-induced tumors as well as tumor incidence in different prostatic lobes. We propose a new short-term rodent model of chemically induced prostate carcinogenesis in which prostate cancer progression occurs differentially in the dorsolateral and ventral lobes. Methods. Adult gerbils were treated with MNU alone or associated with testosterone for 3 or 6 months of treatment. Tumor incidence, latency, localization, and immunohistochemistry (AR, PCNA, smooth muscle α-actin, p63, MGMT, and E-cadherin) were studied in both lobes. Results. Comparisons between both lobes revealed that lesions developed first in the DL while the VL presented longer tumor latency. However, after 6 months, there was a dramatic increase in tumor multiplicity in the VL, mainly in MNU-treated groups. Lesions clearly progressed from a premalignant to a malignant phenotype over time and tumor latency was decreased by MNU + testosterone administration. Three-dimensional reconstruction of the prostatic complex showed that the DL developed tumors exclusively in the periurethral area and showed intense AR, PCNA, and MGMT immunostaining. Moreover, VL lesions emerged throughout the entire lobe. MNU-induced lesions presented markers indicative of an aggressive phenotype: lack of basal cells, rupture of the smooth muscle cell layer, loss of E-cadherin, and high MGMT staining. Conclusions. There are distinct pathways involved in tumor progression in gerbil prostate lobes. This animal provides a good model for prostate cancer since it allows the investigation of advanced steps of carcinogenesis with shorter latency periods in both lobes. Copyright © 2013 Wiley Periodicals, Inc.
Resumo:
This study was undertaken to understand how Lentinula edodes modulates in vivo mutagenesis induced by alkylating agents in bone marrow and peripheral blood as described in our previous article. Male Swiss mice were pretreated for 15 consecutive days with aqueous extracts prepared from L. edodes, after which, the number of circulating blood cells, normal erythroid bone marrow cell cycling, and phagocytosis of micronucleated reticulocyte (MNRET) and activation of spleen macrophages were assessed. The results indicate that the antimutagenicity seen in bone marrow and peripheral blood is exerted by distinct compounds with different actions. The antimutagenic effect in bone marrow is exerted by compounds subject to degradation at deep-freeze storage temperature of -20 C. On the other hand, compounds responsible for antimutagenicity in peripheral blood are not subject to degradation at -20 C. The results also indicate that the antimutagenic action in peripheral blood leading to the reduction of circulating MNRET occurs in the spleen primarily through a phagocytic activity due to higher macrophage numbers and probably not due to the enhanced activation state of individual cells. © Mary Ann Liebert, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)