982 resultados para Gases, Asphyxiating and poisonous


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"The discussions upon international law at the Naval War College have been conducted by George Grafton Wilson, LL. D., professor of international law in Harvard university, and one of the legal advisers at the Conference on limitation of armamemt." -Pref., p. iii.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Draft."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fermi gases with generalized Rashba spin-orbit coupling induced by a synthetic gauge field have the potential of realizing many interesting states, such as rashbon condensates and topological phases. Here, we address the key open problem of the fluctuation theory of such systems and demonstrate that beyond-Gaussian effects are essential to capture the finite temperature physics of such systems. We obtain their phase diagram by constructing an approximate non-Gaussian theory. We conclusively establish that spin-orbit coupling can enhance the exponentially small transition temperature (T-c) of a weakly attracting superfluid to the order of the Fermi temperature, paving a pathway towards high T-c superfluids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the ground-state phase diagram of ultracold dipolar gases in highly anisotropic traps. Starting from a one-dimensional geometry, by ramping down the transverse confinement along one direction, the gas reaches various planar distributions of dipoles. At large linear densities, when the dipolar gas exhibits a crystal-like phase, critical values of the transverse frequency exist below which the configuration exhibits transverse patterns. These critical values are found by means of a classical theory, and are in full agreement with classical Monte Carlo simulations. The study of the quantum system is performed numerically with Monte Carlo techniques and shows that the quantum fluctuations smoothen the transition and make it completely disappear in a gas phase. These predictions could be experimentally tested and would allow one to reveal the effect of zero-point motion on self-organized mesoscopic structures of matter waves, such as the transverse pattern of the zigzag chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The renewed concern in assessing risks and consequences from technological hazards in industrial and urban areas continues emphasizing the development of local-scale consequence analysis (CA) modelling tools able to predict shortterm pollution episodes and exposure effects on humans and the environment in case of accident with hazardous gases (hazmat). In this context, the main objective of this thesis is the development and validation of the EFfects of Released Hazardous gAses (EFRHA) model. This modelling tool is designed to simulate the outflow and atmospheric dispersion of heavy and passive hazmat gases in complex and build-up areas, and to estimate the exposure consequences of short-term pollution episodes in accordance to regulatory/safety threshold limits. Five main modules comprising up-to-date methods constitute the model: meteorological, terrain, source term, dispersion, and effects modules. Different initial physical states accident scenarios can be examined. Considered the main core of the developed tool, the dispersion module comprises a shallow layer modelling approach capable to account the main influence of obstacles during the hazmat gas dispersion phenomena. Model validation includes qualitative and quantitative analyses of main outputs by the comparison of modelled results against measurements and/or modelled databases. The preliminary analysis of meteorological and source term modules against modelled outputs from extensively validated models shows the consistent description of ambient conditions and the variation of the hazmat gas release. Dispersion is compared against measurements observations in obstructed and unobstructed areas for different release and dispersion scenarios. From the performance validation exercise, acceptable agreement was obtained, showing the reasonable numerical representation of measured features. In general, quality metrics are within or close to the acceptance limits recommended for ‘non-CFD models’, demonstrating its capability to reasonably predict hazmat gases accidental release and atmospheric dispersion in industrial and urban areas. EFRHA model was also applied to a particular case study, the Estarreja Chemical Complex (ECC), for a set of accidental release scenarios within a CA scope. The results show the magnitude of potential effects on the surrounding populated area and influence of the type of accident and the environment on the main outputs. Overall the present thesis shows that EFRHA model can be used as a straightforward tool to support CA studies in the scope of training and planning, but also, to support decision and emergency response in case of hazmat gases accidental release in industrial and built-up areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este título se ha desarrollado específicamente para la enseñanza de la Química en el nuevo Nivel Avanzado (A2) de septiembre del año dos mil y aprobado por el OCR (uno de los tres órganos que ofrece la gama completa de las cualificaciones académicas y profesionales del Reino Unido). Está dividido en cuatro secciones:estados de la materia ; diagramas de fases ; distribución entre las fases ; ley de Raoult y destilación. El módulo se basa en el material del libro de texto Química 1, sin embargo, el material de apoyo se puede encontrar en la publicación Química 2. Al final de cada capítulo hay ejercicios con preguntas de autoevaluación para el estudio independiente. Tiene las respuestas a las preguntas de auto-evaluación, glosario, e índice .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Safety is an element of extreme priority in mining operations, currently many traditional mining countries are investing in the implementation of wireless sensors capable of detecting risk factors; through early warning signs to prevent accidents and significant economic losses. The objective of this research is to contribute to the implementation of sensors for continuous monitoring inside underground mines providing technical parameters for the design of sensor networks applied in underground coal mines. The application of sensors capable of measuring in real time variables of interest, promises to be of great impact on safety for mining industry. The relationship between the geological conditions and mining method design, establish how to implement a system of continuous monitoring. In this paper, the main causes of accidents for underground coal mines are established based on existing worldwide reports. Variables (temperature, gas, structural faults, fires) that can be related to the most frequent causes of disaster and its relevant measuring range are then presented, also the advantages, management and mining operations are discussed, including the analyzed of applying these systems in terms of Benefit, Opportunity, Cost and Risk. The publication focuses on coal mining, based on the proportion of these events a year worldwide, where a significant number of workers are seriously injured or killed. Finally, a dynamic assessment of safety at underground mines it is proposed, this approach offers a contribution to design personalized monitoring networks, the experience developed in coal mines provides a tool that facilitates the application development of technology within underground coal mines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The noble gas xenon is considered as a neuroprotective agent, but availability of the gas is limited. Studies on neuroprotection with the abundant noble gases helium and argon demonstrated mixed results, and data regarding neuroprotection after cardiac arrest are scant. We tested the hypothesis that administration of 50% helium or 50% argon for 24 h after resuscitation from cardiac arrest improves clinical and histological outcome in our 8 min rat cardiac arrest model. METHODS Forty animals had cardiac arrest induced with intravenous potassium/esmolol and were randomized to post-resuscitation ventilation with either helium/oxygen, argon/oxygen or air/oxygen for 24 h. Eight additional animals without cardiac arrest served as reference, these animals were not randomized and not included into the statistical analysis. Primary outcome was assessment of neuronal damage in histology of the region I of hippocampus proper (CA1) from those animals surviving until day 5. Secondary outcome was evaluation of neurobehavior by daily testing of a Neurodeficit Score (NDS), the Tape Removal Test (TRT), a simple vertical pole test (VPT) and the Open Field Test (OFT). Because of the non-parametric distribution of the data, the histological assessments were compared with the Kruskal-Wallis test. Treatment effect in repeated measured assessments was estimated with a linear regression with clustered robust standard errors (SE), where normality is less important. RESULTS Twenty-nine out of 40 rats survived until day 5 with significant initial deficits in neurobehavioral, but rapid improvement within all groups randomized to cardiac arrest. There were no statistical significant differences between groups neither in the histological nor in neurobehavioral assessment. CONCLUSIONS The replacement of air with either helium or argon in a 50:50 air/oxygen mixture for 24 h did not improve histological or clinical outcome in rats subjected to 8 min of cardiac arrest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Bibliography"v. 1, p. 24; no. 3. p. 21-22; v. 4, p. 12-18; no. 3. p. 22-23.