880 resultados para GREENS-FUNCTIONS
Resumo:
New representations and efficient calculation methods are derived for the problem of propagation from an infinite regularly spaced array of coherent line sources above a homogeneous impedance plane, and for the Green's function for sound propagation in the canyon formed by two infinitely high, parallel rigid or sound soft walls and an impedance ground surface. The infinite sum of source contributions is replaced by a finite sum and the remainder is expressed as a Laplace-type integral. A pole subtraction technique is used to remove poles in the integrand which lie near the path of integration, obtaining a smooth integrand, more suitable for numerical integration, and a specific numerical integration method is proposed. Numerical experiments show highly accurate results across the frequency spectrum for a range of ground surface types. It is expected that the methods proposed will prove useful in boundary element modeling of noise propagation in canyon streets and in ducts, and for problems of scattering by periodic surfaces.
Resumo:
Using the functional integral formalism for the statistical generating functional in the statistical (finite temperature) quantum field theory, we prove the equivalence of many-photon Greens functions in the Duffin-Kennner-Petiau and Klein-Gordon-Fock statistical quantum field theories. As an illustration, we calculate the one-loop polarization operators in both theories and demonstrate their coincidence.
Resumo:
Over the past ten years, the cross-correlation of long-time series of ambient seismic noise (ASN) has been widely adopted to extract the surface-wave part of the Green’s Functions (GF). This stochastic procedure relies on the assumption that ASN wave-field is diffuse and stationary. At frequencies <1Hz, the ASN is mainly composed by surface-waves, whose origin is attributed to the sea-wave climate. Consequently, marked directional properties may be observed, which call for accurate investigation about location and temporal evolution of the ASN-sources before attempting any GF retrieval. Within this general context, this thesis is aimed at a thorough investigation about feasibility and robustness of the noise-based methods toward the imaging of complex geological structures at the local (∼10-50km) scale. The study focused on the analysis of an extended (11 months) seismological data set collected at the Larderello-Travale geothermal field (Italy), an area for which the underground geological structures are well-constrained thanks to decades of geothermal exploration. Focusing on the secondary microseism band (SM;f>0.1Hz), I first investigate the spectral features and the kinematic properties of the noise wavefield using beamforming analysis, highlighting a marked variability with time and frequency. For the 0.1-0.3Hz frequency band and during Spring- Summer-time, the SMs waves propagate with high apparent velocities and from well-defined directions, likely associated with ocean-storms in the south- ern hemisphere. Conversely, at frequencies >0.3Hz the distribution of back- azimuths is more scattered, thus indicating that this frequency-band is the most appropriate for the application of stochastic techniques. For this latter frequency interval, I tested two correlation-based methods, acting in the time (NCF) and frequency (modified-SPAC) domains, respectively yielding esti- mates of the group- and phase-velocity dispersions. Velocity data provided by the two methods are markedly discordant; comparison with independent geological and geophysical constraints suggests that NCF results are more robust and reliable.
Resumo:
In a globally supersymmetric gauge theory with two distinct mass scales, the possible limitation on the gauge hierarchy due to the structure of the loop-corrected Higgs potential is shown to be absent. Also it has been demonstrated that the supersymmetry forces the large corrections to the two-point Greens functions of the light fields from the quadratic divergences and the logarithmic divergences with large coefficients to be zeroseparately. This would, therefore, allow a gauge hierarchy as large as desired.
Resumo:
In this thesis, a collection of novel numerical techniques culminating in a fast, parallel method for the direct numerical simulation of incompressible viscous flows around surfaces immersed in unbounded fluid domains is presented. At the core of all these techniques is the use of the fundamental solutions, or lattice Green’s functions, of discrete operators to solve inhomogeneous elliptic difference equations arising in the discretization of the three-dimensional incompressible Navier-Stokes equations on unbounded regular grids. In addition to automatically enforcing the natural free-space boundary conditions, these new lattice Green’s function techniques facilitate the implementation of robust staggered-Cartesian-grid flow solvers with efficient nodal distributions and fast multipole methods. The provable conservation and stability properties of the appropriately combined discretization and solution techniques ensure robust numerical solutions. Numerical experiments on thin vortex rings, low-aspect-ratio flat plates, and spheres are used verify the accuracy, physical fidelity, and computational efficiency of the present formulations.
Resumo:
Neste trabalho estudamos o problema da segregação de impurezas substitucionais em sistemas nanoestruturados metálicos formados pela justaposição de camadas (multicamadas). Utilizamos o modelo de ligações fortes (tight-binding) com um orbital por sítio para calcular a estrutura eletrônica desses sistemas, considerando a rede cristalina cubica simples em duas direções de crescimento: (001) e (011). Devido à perda de simetria do sistema, escrevemos o hamiltoniano em termos de um vetor de onda k, paralelo ao plano, e um ındice l que denota um plano arbitrario do sistema. Primeiramente, calculamos a estrutura eletrônica do sistema considerando-o formado por átomos do tipo A e, posteriormente, investigamos as modificações nessa estrutura eletrônica ao introduzirmos uma impureza do tipo B em um plano arbitrário do sistema. Calculamos o potencial introduzido por esta impureza levando-se em conta a neutralidade de carga através da regra de soma de Friedel. Calculamos a variação da energia eletrônica total ΔEl como função da posição da impureza. Como substrato, consideramos sistemas com ocupações iguais a 0.94 e 0.54 elétrons por banda, o que dentro do modelo nos permite chamá-los de Nie Cr. As impurezas sao tambem metais de transição - Mn, Fee Co. Em todos os casos investigados, foi verificado que a variação de energia eletrônica total apresenta um comportamento oscilatorio em função da posição da impureza no sistema, desde o plano superficial, até vários planos interiores do sistema. Como resultado, verificamos a ocorrencia de planos mais favoráveis à localização da impureza. Ao considerarmos um número relativamente grande de planos, um caso em particular foi destacado pelo aparecimento de um batimentono comportamento oscilatório de ΔEl. Estudamos também o comportamento da variação da energia total, quando camadas (filmes) são crescidas sobre o substrato e uma impureza do mesmo tipo das camadas é colocada no substrato. Levamos em conta a diferença de tamanho entre os átomos do substrato e os átomos dos filmes. Analisamos ainda a influência da temperatura sobre o comportamento oscilatório da energia total, considerando a expansão de Sommerfeld.
Resumo:
In this work by employing numerical three-dimensional simulations we study the electrical performance and short channel behavior of several multi-gate transistors based on advanced SOI technology. These include FinFETs, triple-gate and gate-all-around nanowire FETs with different channel material, namely Si, Ge, and III-V compound semiconductors, all most promising candidates for future nanoscale CMOS technologies. Also, a new type of transistor called “junctionless nanowire transistor” is presented and extensive simulations are carried out to study its electrical characteristics and compare with the conventional inversion- and accumulation-mode transistors. We study the influence of device properties such as different channel material and orientation, dimensions, and doping concentration as well as quantum effects on the performance of multi-gate SOI transistors. For the modeled n-channel nanowire devices we found that at very small cross sections the nanowires with silicon channel are more immune to short channel effects. Interestingly, the mobility of the channel material is not as significant in determining the device performance in ultrashort channels as other material properties such as the dielectric constant and the effective mass. Better electrostatic control is achieved in materials with smaller dielectric constant and smaller source-to-drain tunneling currents are observed in channels with higher transport effective mass. This explains our results on Si-based devices. In addition to using the commercial TCAD software (Silvaco and Synopsys TCAD), we have developed a three-dimensional Schrödinger-Poisson solver based on the non-equilibrium Green’s functions formalism and in the framework of effective mass approximation. This allows studying the influence of quantum effects on electrical performance of ultra-scaled devices. We have implemented different mode-space methodologies in our 3D quantum-mechanical simulator and moreover introduced a new method to deal with discontinuities in the device structures which is much faster than the coupled-mode-space approach.
Resumo:
Thesis (Ph.D.)--University of Washington, 2015
Resumo:
The nucleon spectral function in nuclear matter fulfills an energy weighted sum rule. Comparing two different realistic potentials, these sum rules are studied for Greens functions that are derived self-consistently within the T matrix approximation at finite temperature.
Resumo:
Linear covariant gauges, such as Feynman gauge, are very useful in perturbative calculations. Their non-perturbative formulation is, however, highly non-trivial. In particular, it is a challenge to define linear covariant gauges on a lattice. We consider a class of gauges in lattice gauge theory that coincides with the perturbative definition of linear covariant gauges in the formal continuum limit. The corresponding gauge-fixing procedure is described and analyzed in detail, with an application to the pure SU(2) case. In addition, results for the gluon propagator in the two-dimensional case are given. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work consists on the theoretical and numerical analysis of some properties of circular microstrip patch antennas on isotropic and uniaxial anisotropic substrates. For this purpose, a full wave analysis is performed, using Hertz Vector Potentials method in the Hankel Transform domain. In the numerical analysis, the moment method is also used in order to determine some characteristics of the antenna, such as: resonant frequency and radiation pattern. The definition of Hertz potentials in the Hankel domain is used in association with Maxwell´s equations and the boundary conditions of the structures to obtain the Green´s functions, relating the components of the current density on the patch and the tangential electric field components. Then, the Galerkin method is used to generate a matrix equation whose nontrivial solution is the complex resonant frequency of the structure. In the analysis, a microstrip antenna with only one isotropic dielectric layer is initially considered. For this structure, the effect of using superconductor patches is also analyzed. An analysis of a circular microstrip antenna on an uniaxial anisotropic dielectric layer is performed, using the Hertz vector potentials oriented along the optical axis of the material, that is perpendicular to the microstrip ground plane. Afterwards, the circular microstrip antenna using two uniaxial anisotropic dielectric layers is investigated, considering the particular case in which the inferior layer is filled by air. In this study, numerical results for resonant frequency and radiation pattern for circular microstrip antennas on isotropic and uniaxial anisotropic substrates are presented and compared with measured and calculated results found in the literature
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Pós-graduação em Física - IFT
Resumo:
O estudo do comportamento dinâmico da junção que se forma ao se unir uma fibra nervosa a um semicondutor é objeto de muitas pesquisas ultimamente em grandes centros de pesquisas. Estes estudos levam basicamente a dois modelos matemáticos de modelagem da junção: o modelo de contacto de ponta e o modelo de contacto de área. Utilizando o modelo de contacto de área, resolve-se a equação diferencial que descreve o comportamento dinâmico da junção neurônio-semicondutor, através de dois métodos analíticos. No primeiro método a solução da equação diferencial é obtida através da soma de duas equações: da solução da equação homogênea mais a da equação particular, obtendo dessa forma, o resultado que consta na literatura. Já o segundo método é o que descreve a solução usando as funções de Green, cujo resultado, embora não coincidente com o da literatura, é totalmente coincidente na região de interesse dentro da junção. A vantagem do uso da função de Green na determinação da solução de uma equação diferencial, é que, uma vez determinada essa função, a solução dessa equação diferencial é obtida de forma imediata, bastando para tal, fazer um processo de integração do produto entre a função de Green e a função de excitação ou fonte. Por último, mostra-se a completa equivalência entre os dois métodos de soluções da equação diferencial.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)