920 resultados para GRAVITY THEORIES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A prescription for computing the propagator for D-dimensional higher-derivative gravity theories, based on the Barnes-Rivers operators, is presented. A systematic study of the tree-level unitarity of these theories is developed and the agreement of their linearized versions with Newton's law is investigated by computing the corresponding effective nonrelativistic potential. Three-dimensional quadratic gravity with a gravitational Chern-Simons term is also analyzed. A discussion on the issue of light bending within the framework of both D-dimensional quadratic gravity and three-dimensional quadratic gravity with a Chern-Simons term is provided as well. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of a topological Chern-Simons term to three-dimensional higher-derivative gravity is not a good therapy to cure the nonunitarity of the aforementioned theory. Moreover, R+R-2 gravity in (2+1)D, which is unitary at the tree level, becomes tree-level nonunitary when it is augmented by the abovementioned topological term. Therefore, unlike what is claimed in the literature, topological higher-derivative gravity in (2+1)D is not tree-level unitary and neither is topological three-dimensional R+R-2 gravity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincare algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincare algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson-Sigma models based on a nonlinear deformation of the extended Poincare algebra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple algorithm for computing the propagator for higher derivative gravity theories based on the Barnes-Rivers operators is presented. The prescription is used, among other things, to obtain the propagator for quadratic gravity in an unconventional gauge. We also find the propagator for both gravity and quadratic gravity in an interesting gauge recently baptized the Einstein gauge [Hitzer and Dehnen, Int. J. Theor. Phys. 36 (1997), 559].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss conservation laws for gravity theories invariant under general coordinate and local Lorentz transformations. We demonstrate the possibility to formulate these conservation laws in many covariant and noncovariant(ly looking) ways. An interesting mathematical fact underlies such a diversity: there is a certain ambiguity in a definition of the (Lorentz-) covariant generalization of the usual Lie derivative. Using this freedom, we develop a general approach to the construction of invariant conserved currents generated by an arbitrary vector field on the spacetime. This is done in any dimension, for any Lagrangian of the gravitational field and of a (minimally or nonminimally) coupled matter field. A development of the regularization via relocalization scheme is used to obtain finite conserved quantities for asymptotically nonflat solutions. We illustrate how our formalism works by some explicit examples. © 2006 The American Physical Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent investigations of various quantum-gravity theories have revealed a variety of possible mechanisms that lead to Lorentz violation. One of the more elegant of these mechanisms is known as Spontaneous Lorentz Symmetry Breaking (SLSB), where a vector or tensor field acquires a nonzero vacuum expectation value. As a consequence of this symmetry breaking, massless Nambu-Goldstone modes appear with properties similar to the photon in Electromagnetism. This thesis considers the most general class of vector field theories that exhibit spontaneous Lorentz violation-known as bumblebee models-and examines their candidacy as potential alternative explanations of E&M, offering the possibility that Einstein-Maxwell theory could emerge as a result of SLSB rather than of local U(1) gauge invariance. With this aim we employ Dirac's Hamiltonian Constraint Analysis procedure to examine the constraint structures and degrees of freedom inherent in three candidate bumblebee models, each with a different potential function, and compare these results to those of Electromagnetism. We find that none of these models share similar constraint structures to that of E&M, and that the number of degrees of freedom for each model exceeds that of Electromagnetism by at least two, pointing to the potential existence of massive modes or propagating ghost modes in the bumblebee theories.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The role played by torsion in gravitation is critically reviewed. After a description of the problems and controversies involving the physics of torsion, a comprehensive presentation of the teleparallel equivalent of general relativity is made. According to this theory, curvature and torsion are alternative ways of describing the gravitational field, and consequently related to the same degrees of freedom of gravity. However, more general gravity theories, like for example Einstein-Cartan and gauge theories for the Poincare and the affine groups, consider curvature and torsion as representing independent degrees of freedom. By using an active version of the strong equivalence principle, a possible solution to this conceptual question is reviewed. This solution ultimately favors the teleparallel point of view, and consequently the completeness of general relativity. A discussion of the consequences for gravitation is presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the context of ƒ (R) gravity theories, we show that the apparent mass of a neutron star as seen from an observer at infinity is numerically calculable but requires careful matching, first at the star’s edge, between interior and exterior solutions, none of them being totally Schwarzschild-like but presenting instead small oscillations of the curvature scalar R; and second at large radii, where the Newtonian potential is used to identify the mass of the neutron star. We find that for the same equation of state, this mass definition is always larger than its general relativistic counterpart. We exemplify this with quadratic R^2 and Hu-Sawicki-like modifications of the standard General Relativity action. Therefore, the finding of two-solar mass neutron stars basically imposes no constraint on stable ƒ (R) theories. However, star radii are in general smaller than in General Relativity, which can give an observational handle on such classes of models at the astrophysical level. Both larger masses and smaller matter radii are due to much of the apparent effective energy residing in the outer metric for scalar-tensor theories. Finally, because the ƒ (R) neutron star masses can be much larger than General Relativity counterparts, the total energy available for radiating gravitational waves could be of order several solar masses, and thus a merger of these stars constitutes an interesting wave source.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The kinematic expansion history of the universe is investigated by using the 307 supernovae type Ia from the Union Compilation set. Three simple model parameterizations for the deceleration parameter ( constant, linear and abrupt transition) and two different models that are explicitly parametrized by the cosmic jerk parameter ( constant and variable) are considered. Likelihood and Bayesian analyses are employed to find best fit parameters and compare models among themselves and with the flat Lambda CDM model. Analytical expressions and estimates for the deceleration and cosmic jerk parameters today (q(0) and j(0)) and for the transition redshift (z(t)) between a past phase of cosmic deceleration to a current phase of acceleration are given. All models characterize an accelerated expansion for the universe today and largely indicate that it was decelerating in the past, having a transition redshift around 0.5. The cosmic jerk is not strongly constrained by the present supernovae data. For the most realistic kinematic models the 1 sigma confidence limits imply the following ranges of values: q(0) is an element of [-0.96, -0.46], j(0) is an element of [-3.2,-0.3] and z(t) is an element of [0.36, 0.84], which are compatible with the Lambda CDM predictions, q(0) = -0.57 +/- 0.04, j(0) = -1 and z(t) = 0.71 +/- 0.08. We find that even very simple kinematic models are equally good to describe the data compared to the concordance Lambda CDM model, and that the current observations are not powerful enough to discriminate among all of them.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this Letter, we apply the proper-time method to generate the Lorentz-violating Chern-Simons terms in the four-dimensional Yang-Mills and non-linearized gravity theories. It is shown that the coefficient of the induced Chern-Simons term is finite but regularization dependent. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this dissertation, after a brief review on the Einstein s General Relativity Theory and its application to the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models, we present and discuss the alternative theories of gravity dubbed f(R) gravity. These theories come about when one substitute in the Einstein-Hilbert action the Ricci curvature R by some well behaved nonlinear function f(R). They provide an alternative way to explain the current cosmic acceleration with no need of invoking neither a dark energy component, nor the existence of extra spatial dimensions. In dealing with f(R) gravity, two different variational approaches may be followed, namely the metric and the Palatini formalisms, which lead to very different equations of motion. We briefly describe the metric formalism and then concentrate on the Palatini variational approach to the gravity action. We make a systematic and detailed derivation of the field equations for Palatini f(R) gravity, which generalize the Einsteins equations of General Relativity, and obtain also the generalized Friedmann equations, which can be used for cosmological tests. As an example, using recent compilations of type Ia Supernovae observations, we show how the f(R) = R − fi/Rn class of gravity theories explain the recent observed acceleration of the universe by placing reasonable constraints on the free parameters fi and n. We also examine the question as to whether Palatini f(R) gravity theories permit space-times in which causality, a fundamental issue in any physical theory [22], is violated. As is well known, in General Relativity there are solutions to the viii field equations that have causal anomalies in the form of closed time-like curves, the renowned Gödel model being the best known example of such a solution. Here we show that every perfect-fluid Gödel-type solution of Palatini f(R) gravity with density and pressure p that satisfy the weak energy condition + p 0 is necessarily isometric to the Gödel geometry, demonstrating, therefore, that these theories present causal anomalies in the form of closed time-like curves. This result extends a theorem on Gödel-type models to the framework of Palatini f(R) gravity theory. We derive an expression for a critical radius rc (beyond which causality is violated) for an arbitrary Palatini f(R) theory. The expression makes apparent that the violation of causality depends on the form of f(R) and on the matter content components. We concretely examine the Gödel-type perfect-fluid solutions in the f(R) = R−fi/Rn class of Palatini gravity theories, and show that for positive matter density and for fi and n in the range permitted by the observations, these theories do not admit the Gödel geometry as a perfect-fluid solution of its field equations. In this sense, f(R) gravity theory remedies the causal pathology in the form of closed timelike curves which is allowed in General Relativity. We also examine the violation of causality of Gödel-type by considering a single scalar field as the matter content. For this source, we show that Palatini f(R) gravity gives rise to a unique Gödeltype solution with no violation of causality. Finally, we show that by combining a perfect fluid plus a scalar field as sources of Gödel-type geometries, we obtain both solutions in the form of closed time-like curves, as well as solutions with no violation of causality

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Perhaps one of the main features of Einstein's General Theory of Relativity is that spacetime is not flat itself but curved. Nowadays, however, many of the unifying theories like superstrings on even alternative gravity theories such as teleparalell geometric theories assume flat spacetime for their calculations. This article, an extended account of an earlier author's contribution, it is assumed a curved group manifold as a geometrical background from which a Lagrangian for a supersymmetric N = 2, d = 5 Yang-Mills - SYM, N = 2, d = 5 - is built up. The spacetime is a hypersurface embedded in this geometrical scenario, and the geometrical action here obtained can be readily coupled to the five-dimensional supergravity action. The essential idea that underlies this work has its roots in the Einstein-Cartan formulation of gravity and in the 'group manifold approach to gravity and supergravity theories'. The group SYM, N = 2, d = 5, turns out to be the direct product of supergravity and a general gauge group g: G = g circle times <(SU(2, 2/1))over bar>.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The first part of the thesis concerns the study of inflation in the context of a theory of gravity called "Induced Gravity" in which the gravitational coupling varies in time according to the dynamics of the very same scalar field (the "inflaton") driving inflation, while taking on the value measured today since the end of inflation. Through the analytical and numerical analysis of scalar and tensor cosmological perturbations we show that the model leads to consistent predictions for a broad variety of symmetry-breaking inflaton's potentials, once that a dimensionless parameter entering into the action is properly constrained. We also discuss the average expansion of the Universe after inflation (when the inflaton undergoes coherent oscillations about the minimum of its potential) and determine the effective equation of state. Finally, we analyze the resonant and perturbative decay of the inflaton during (p)reheating. The second part is devoted to the study of a proposal for a quantum theory of gravity dubbed "Horava-Lifshitz (HL) Gravity" which relies on power-counting renormalizability while explicitly breaking Lorentz invariance. We test a pair of variants of the theory ("projectable" and "non-projectable") on a cosmological background and with the inclusion of scalar field matter. By inspecting the quadratic action for the linear scalar cosmological perturbations we determine the actual number of propagating degrees of freedom and realize that the theory, being endowed with less symmetries than General Relativity, does admit an extra gravitational degree of freedom which is potentially unstable. More specifically, we conclude that in the case of projectable HL Gravity the extra mode is either a ghost or a tachyon, whereas in the case of non-projectable HL Gravity the extra mode can be made well-behaved for suitable choices of a pair of free dimensionless parameters and, moreover, turns out to decouple from the low-energy Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis we develop further the functional renormalization group (RG) approach to quantum field theory (QFT) based on the effective average action (EAA) and on the exact flow equation that it satisfies. The EAA is a generalization of the standard effective action that interpolates smoothly between the bare action for krightarrowinfty and the standard effective action rnfor krightarrow0. In this way, the problem of performing the functional integral is converted into the problem of integrating the exact flow of the EAA from the UV to the IR. The EAA formalism deals naturally with several different aspects of a QFT. One aspect is related to the discovery of non-Gaussian fixed points of the RG flow that can be used to construct continuum limits. In particular, the EAA framework is a useful setting to search for Asymptotically Safe theories, i.e. theories valid up to arbitrarily high energies. A second aspect in which the EAA reveals its usefulness are non-perturbative calculations. In fact, the exact flow that it satisfies is a valuable starting point for devising new approximation schemes. In the first part of this thesis we review and extend the formalism, in particular we derive the exact RG flow equation for the EAA and the related hierarchy of coupled flow equations for the proper-vertices. We show how standard perturbation theory emerges as a particular way to iteratively solve the flow equation, if the starting point is the bare action. Next, we explore both technical and conceptual issues by means of three different applications of the formalism, to QED, to general non-linear sigma models (NLsigmaM) and to matter fields on curved spacetimes. In the main part of this thesis we construct the EAA for non-abelian gauge theories and for quantum Einstein gravity (QEG), using the background field method to implement the coarse-graining procedure in a gauge invariant way. We propose a new truncation scheme where the EAA is expanded in powers of the curvature or field strength. Crucial to the practical use of this expansion is the development of new techniques to manage functional traces such as the algorithm proposed in this thesis. This allows to project the flow of all terms in the EAA which are analytic in the fields. As an application we show how the low energy effective action for quantum gravity emerges as the result of integrating the RG flow. In any treatment of theories with local symmetries that introduces a reference scale, the question of preserving gauge invariance along the flow emerges as predominant. In the EAA framework this problem is dealt with the use of the background field formalism. This comes at the cost of enlarging the theory space where the EAA lives to the space of functionals of both fluctuation and background fields. In this thesis, we study how the identities dictated by the symmetries are modified by the introduction of the cutoff and we study so called bimetric truncations of the EAA that contain both fluctuation and background couplings. In particular, we confirm the existence of a non-Gaussian fixed point for QEG, that is at the heart of the Asymptotic Safety scenario in quantum gravity; in the enlarged bimetric theory space where the running of the cosmological constant and of Newton's constant is influenced by fluctuation couplings.