914 resultados para GLUTATHIONE-PEROXIDASE ACTIVITY
Resumo:
A novel mimic TeHA was synthesized by modifying hyaluronic acid (HA) with tellurium, whose function is similar to that of glutathione peroxidase (GPX). The structure of TeHA was characterized by means of infrared spectroscopy and nuclear magnetic resonance spectroscopy, showing that the target Te is located at -CH2OH of the N-acetyl-D-glucosamine of HA. The activity of TeHA is 163.6 U/mu mol according to Wilson's method. In contrast to other mimics, TeHA displays a high activity. Moreover, TeHA can use many hydroperoxides as substrates, such as H2O2, cumenyl hydroperoxide, and tert-butyl hydroperoxide, and cumenyl hydroperoxide is the optimal substrate. A ping-pong mechanism was deduced for the reduction reactions catalyzed by TeHA according to the steady-state kinetic studies.
Resumo:
A novel mimic was synthesized by modifying hyaluronic acid (HA) with tellurium, whose function is similar to that of glutathione peroxidase (GPX). The structure of TeHA was characterized by means of IR and NMR, the target-Te was located at -CH2OH of the N-acetyl-D-glucosamine of HA. The H2O2 reducing activity of TeHA, by glutathione (GSH), was 163.6 U/mu mol according to Wilson's method. In contrast to other mimics, TeHA displayed the highest activity. Moreover, TeHA accepted many hydroperoxides as its substrates, such as H2O2, cumenyl hydroperoxide (CuOOH) and tert-butyl hydroperoxide (t-BuOOH), and CuOOH was the optimal substrate of TeHA. A ping-pong mechanism was observed in the steady-state kinetic studies of the reactions catalyzed by TeHA.
Resumo:
By screening the phage-displayed human single chain antibody library, we have got the specific single chain antibody bound to GSH-S-DNP butyl ester as the hapten. The tertiary structure of the protein was analyzed with the aid of computer, and the results showed the CDR3 region located on the surface of the antibody. The soluble antibody was expressed in E. coli. and the active site serine was converted into selenocysteine with the chemical modifying method, which resulted in the catalytic antibody with GPx activity of 80 U/mu mol. Furthermore, the same Ping-Pong mechanism as the natural GPx was observed when the kinetic behavior of the antibody was studied.
Resumo:
In order to generate catalytic antibodies with glutathione peroxidase (GPx) activity, we prepared GSH-S-DNP butyl ester and GSH-S-DNP benzyl ester as the haptens. Two ScFvs that bound specifically to the haptens were selected from the human phage-displayed antibody library. The two ScFv genes were highly homologous, consisting of 786 bps and belonging to the same VH family-DP25. In the premise of maintaining the amino acid sequence, mutated plasmids were constructed by use of the mutated primers in PCR, and they were over-expressed in E. coli. After the active site serine was converted into selenocysteine with the chemical modifying method, we obtained two human catalytic antibodies with GPx activity of 72.2U/mu mol and 28.8U/mu mol, respectively. With the aid of computer mimicking, it can be assumed that the antibodies can form dimers and the mutated selenocysteine residue is located in the binding site. Furthermore, the same Ping-Pong mechanism as the natural GPx was observed when the kinetic behavior of the antibody with the higher activity was studied. (C) 2001 Elsevier Science BY. All rights reserved.
Resumo:
The thiol group of glutathione (GSH) was protected by 2,4-dinitrochlorobenzene (DNCB), the product S-substituted dinitrophenyl GSH(GSH-S-DNP) was alcoholized to obtain haptenes 4 and 5 respectively. As haptenes, the two GSH derivatives were characterized by means of H-1 NMR, MALDI-TOF-MS and IR, followed by individually coupling with bovine serum albumin (BSA) via glutaraldehyde. BSB-Hp4 and BSA-Hp5 were purified by Sephadex G-25 gel filtration chromatography. For each conjugate, the average haptene-BSA ratio was 12 : 1. The electrophoresis analysis showed that the average molecular weight of each conjugate was 76 500. The CD spectrum indicated that the conjugates had more a-helix content than BSA did.
Resumo:
Cardiovascular disease is the major cause of morbidity and mortality in patients with end-stage renal failure. Increased free radical production and antioxidant depletion may contribute to the greatly increased risk of atherosclerosis in these patients. Glutathione peroxidase (GPX) is an important antioxidant, the plasma form of which is synthesized mainly in the kidney (eGPX). The aim of this study was to assess the activity of eGPX in patients with end-stage renal failure on haemodialysis. Venous blood was collected from 87 haemodialysis patients immediately prior to and after dialysis and from 70 healthy controls. Serum eGPX activity was measured using hydrogen peroxide as substrate and immunoreactivity determined by ELISA. eGPX activity was significantly reduced in dialysis patients when compared to controls (106 +/- 2.7 and 281 +/- 3.6 U/l respectively, p <0.001). Following haemodialysis, eGPX activity rose significantly to 146 +/- 3.8 U/l, p <0.001, although remaining below control values (p <0.005). Immunoreactive eGPX, however, was similar in all groups (pre-dialysis 14.10 +/- 1.26 microg/ml, post-dialysis 14.58 +/- 1.35 microg/ml, controls 15.20 +/- 1.62 microg/ml, p = NS). A decrease was observed in the specific activity of eGPX in patients when compared to controls (8.81 +/- 1.14, 10.71 +/- 1.54 and 21.97 +/- 1.68 U/mg respectively, p <0.0001). eGPX activity is impaired in patients undergoing haemodialysis and so may contribute to atherogenesis in renal failure.
Resumo:
The objective of this study was to determine the concentration of total selenium (Se) and the proportions of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in the post mortem tissues of female pheasants (Phasianus Colchicus Torquator) offered diets containing graded additions of selenized enriched yeast (SY) or sodium selenite (SS). Thiobarbituric acid reactive substances (TBARS) and tissue glutathione peroxidase (GSH-Px) activity of breast (Pectoralis Major) were assessed at 0 and 5 d post-mortem. A total of 216 female pheasant chicks were enrolled onto the study. 24 birds were euthanased at the start of the study and samples of blood, breast muscle, leg muscle (Peroneus Longus and M. Gastrocnemius), heart, liver, kidney and gizzard collected for determination of total Se. Remaining birds were blocked by live weight and randomly allocated to one of four dietary treatments (n=48 birds/treatment) that either differed in Se source (SY vs. SS) or dose (Con [0.2 mg total Se/kg], SY-L and SS-L [0.3 mg/kg total Se as SY and SS, respectively], and SY-H [0.45 mg total Se/kg]). Following 42 and 91 days of treatment 24 birds/treatment were euthanased and samples of blood, breast muscle, leg muscle, heart, liver, kidney and gizzard retained for determination of total Se and the proportion of total Se comprised as SeMet or SeCys. Whole blood GSH-Px activity was determined at each time point. Tissue GSH-Px activity and TBARS were determined in breast tissue at the end of the study. There were positive responses (P<0.001) in both blood and tissues to the graded addition of SY to the diet but the same responses were not apparent in the blood and tissues of selenite supplemented birds receiving comparable doses. Although there were differences between tissue types in the distribution of SeMet and SeCys there were few differences between treatments. There were effects of treatment on erythrocyte GSH-Px activity (P = 0.012) with values being higher in treatments SY-H and SS-L when compared to the negative control and treatment SY-L. There were no effects of treatment on tissue GSH-Px activity which is reflected in the overall lack of any treatment effects on TBARS.
Resumo:
1. In order to investigate the effect of aging on the erythrocyte glutathione system, total glutathione (GSH), glutathione reductase (GSH-red) and glutathione peroxidase (GSH-px) levels were measured in erythrocytes from 33 young (mean age = 30.5 +/- 9.7 years) and 28 aged (mean age = 68.9 +/- 11.4 years) healthy individuals.2. GSH was 3.5 +/- 1.8-mu-M/g Hb for the young group, a value significantly greater (P < 0.01) than 2.3 +/- 0.9-mu-M/g Hb found for the aged group. Similarly, GSH-red activity, 5.5 +/- 1.8 IU/g Hb, was higher (P < 0.05) for the young group than 3.4 +/- 0.9 IU/g Hb found for the aged group. The GSH-px activity levels for the young group, 21.1 +/- 5.9 IU/g Hb, were significantly greater (P < 0.01) than 12.0 +/- 3.3 IU/g Hb for the aged group. The lower activity detected in the aged group for all of these parameters of the glutathione redox system was not related to low levels of hematocrit or hemoglobin.3. There was no statistical difference in the activation coefficient (AC) of reductase (+FAD/-FAD) between groups, which seems to indicate that the lower activity of glutathione reductase observed in the aged group was not due to riboflavin deficiency.4. Additional information is required to determine the mechanisms controlling the glutathione redox system and its role in the aging process.
Resumo:
Studies have shown that there are inverse relationships between nut consumption and the reduction of cardiovascular risk. This study tested the hypothesis that daily consumption of Brazilian nuts would have a positive effect upon selenium (Se) status, erythrocyte glutathione peroxidase activity, lipid profile, and atherogenic risk in severely obese women. Thirty-seven severely obese women each consumed 1 Brazilian nut a day (290 mu g of Se a day) for 8 weeks. Blood Se concentrations, total erythrocyte glutathione peroxidase activity, lipid profile, and Castelli I and H indexes were evaluated before and after the nuts consumption. All the patients were Se deficient at baseline; this deficiency was remedied by the consumption of the Brazilian nut (P < .0001). The intake of Brazilian nuts promoted a significant increase in high-density lipoprotein cholesterol concentrations (P < .00001), which then resulted in a significant improvement of the Castelli I (P < .0002) and II (P < .0004) indexes. This study shows that obese people who implement daily consumption of Brazilian nuts can improve both Se status and lipid profile, especially high-density lipoprotein cholesterol levels, thereby reducing cardiovascular risks. (C) 2012 Published by Elsevier Inc.
Resumo:
In this paper, inhibition of the glutathione peroxidase activity of two synthetic organoselenium compounds, bis[2-(N,N-dimethylamino)benzyl]diselenide (5) and bis[2-(N,N-dimethylamino)benzyl]selenide (9), by gold(I) thioglucose (1), chloro(triethylphosphine)gold(I), chloro(trimethylphosphine)gold(I), and chloro(triphenylphosphine)gold(I) is described. The inhibition is found to be competitive with respect to a peroxide (H2O2) substrate and noncompetitive with respect to a thiol (PhSH) cosubstrate. The diselenide 5 reacts with PhSH to produce the corresponding selenol (6), which upon treatment with 1 equiv of gold(I) chlorides produces the corresponding gold selenolate complexes 11−13. However, the addition of 1 equiv of selenol 6 to complexes 11−13 leads to the formation of bis-selenolate complex 14 by ligand displacement reactions involving the elimination of phosphine ligands. The phosphine ligands eliminated from these reactions are further converted to the corresponding phosphine oxides (R3PO) and selenides (R3PSe). In addition to the replacement of the phosphine ligand by selenol 6, an interchange between two different phosphine ligands is also observed. For example, the reaction of complex 11 having a trimethylphosphine ligand with triphenylphosphine produces complex 13 by phosphine interchange reactions via the formation of intermediates 15 and 16. The reactivity of selenol 6 toward gold(I) phosphines is found to be similar to that of selenocysteine.
Resumo:
A series of secondary and tertiary amide-substituted diselenides were synthesized and studied for their GPx-like antioxidant activities using H2O2 Cum-OOH, and tBuOOH as substrates and PhSH as thiol co-substrate.The effect of substitution at the free -NH group of the amide moiety in the sec-amide-based diselenides on GPx activity was analyzed by detailed experimental and theoretical methods. It is observed that substitution at the free -NH group significantly enhances the GPx-like activities of the sec-amide-based diselenides, mainly by reducing the Se center dot center dot center dot O nonbonded interactions. The reduction in strength of the Se center dot center dot center dot O interaction upon introduction of N,N-dialkyl substituents not only prevents the undesired thiol exchange reactions, but also reduces the stability of selenenyl sulfide intermediates. This leads to a facile disproportionation of the selenenyl sulfide to the corresponding diselenide, which enhances the catalytic activity. The mechanistic investigations indicate that the reactivity of diselenides having sec-or tert-amide moieties with PhSH is extremely slow; indicating that the first step of the catalytic cycle involves the reaction between the diselenides and peroxide to produce the corresponding selenenic and seleninic acids.
Resumo:
In this study, a series of seeondary- and tertiary-amino-substituted diaryl diselenides were synthesized and studied for their glutathione peroxidase (GPx) like antioxidant activities with H2O2, cumene hydroperoxide, or tBuOOH as substrates and with PhSH or glutathione (GSH) as thiol cosubstrates. This study reveals that replacement of the tert-amino groups in benzylamine-based diselenides by sec-amino moieties drastically enhances the catalytic activities in both the aromatic thiol (PhSH) and GSH assay systems. Particularly, the N-propyl- and N-isopropylamino-substituted diselenides are 8-18 times more active than the corresponding N,N-dipropyl- and N,N-diisopropylamine-based compounds in all three peroxide systems when GSH is used as the thiol cosubstrate. Although the catalytic mechanism of sec-amino-substituted disclenides is similar to that of the tert-amine-based compounds, differences in the stability and reactivity of some of the key intermediates account for the differences in the GPx-like activities. it is observed that the sec-amino groups are better than the tert-amino moieties for generating the catalytically active selenols. This is due to the absence of any significant thiol-exchange reactions in the selenenyl sulfides derived from sec-amine-based diselenides. Furthermore, the seleninic acids (RSeO2H) derived from the sec-amine-based compounds are more stable toward further reactions with peroxides than their tert-amine-based analogues.
Resumo:
The first examples of stable spirodiazaselenurane and spirodiazatellurane were synthesized by oxidative spirocyclization of the corresponding diaryl selenide and telluride and were structurally characterized. X-ray crystal structures of the spirodiazaselenurane and spirodiazatellurane suggest that the structures are distorted trigonal bipyramidal (TBP) with the electronegative nitrogen atoms occupying the apical positions and two carbon atoms and the lone pair of Se/Te occupying the equatorial positions. Interestingly, the spirodiazatellurane underwent spontaneous chiral resolution during crystallization, and the absolute configurations of its enantiomers were confirmed by single-crystal X-ray analyses. A detailed mechanistic study indicates that the cyclization to spirodiazaselenurane and spirodiazatellurane occurs via selenoxide and telluroxide intermediates. The chalcogenoxides cyclize to the corresponding spiro compounds in a stepwise manner via the involvement of hydroxyl chalcogenurane intermediates, and the activation energy for them spirocyclization reaction decreases in the order S > Se > Te. In addition to the synthesis, characterization, and mechanism of cyclization, the glutathione peroxidase (GPx) mimetic activity of the newly synthesized compounds was evaluated. These studies suggest that the tellurium compounds are more effective as GPx mimics than their selenium counterparts due to the fast oxidation of the tellurium center in the presence of peroxide and the involvement of an efficient redox cycle between the telluride and telluroxide intermediate.
Resumo:
In this work, several tertiary amine-based diaryl diselenides were synthesized and evaluated for their glutathione peroxidase (GPx)-like antioxidant activities using hydrogen peroxide, tert-butyl hydroperoxide and cumene hydroperoxide as substrates and thiophenol (PhSH) and glutathione (GSH) as co-substrates. A comparison of the GPx-like activity of 4-methoxy-substituted N,N-dialkylbenzylamine-based diselenides with that of the corresponding 6-methoxy-substituted compounds indicates that the activity highly depends on the position of the methoxy substituent. Although the methoxy group at 4- and 6-position alters the electronic properties of selenium, the substitution at the 6-position provides the required steric protection for some of the key intermediates in the catalytic cycle. A detailed experimental and theoretical investigation reveals that the 6-methoxy substituent prevents the undesired thiol exchange reactions at the selenium centers in the selenenyl sulfide intermediates. The 6-methoxy substituent also prevents the formation of seleninic and selenonic acids. When PhSH is used as the thiol co-substrate, the 4-methoxy-substituted diselenides exhibit GPx-like activity similar to that of the parent compounds as the 4-methoxy substituent does not block the selenium center in the selenenyl sulfide intermediates from thiol exchange reactions. In contrast, the 4-methoxy substituent significantly enhances the GPx-like activity of the diselenides when glutathione (GSH) is used as the co-substrate. (C) 2012 Elsevier Ltd. All rights reserved.