981 resultados para GENETIC-DAMAGE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mineral trioxide aggregate (MTA) and Portland cement are being used in dentistry as root-end-filling material for periapical surgery and for the sealing of communications between the root canal system and the surrounding tissues. However, genotoxicity tests for complete risk assessment of these compounds have not been conducted up to now. In the present study, the genotoxic effects of MTA and Portland cements were evaluated in peripheral lymphocytes from 10 volunteers by the alkaline single cell gel (comet) assay. The results pointed out that the single cell gel (comet) assay failed to detect the presence of DNA damage after a treatment of peripheral lymphocytes by MTA and Portland cements for concentrations up to 1000 mu g mL(-1). In summary, our results indicate that exposure to MTA or Portland cements may not be a factor that increases the level of DNA lesions in human peripheral lymphocytes as detected by single cell gel (comet) assay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dental bleaching is a simple and conservative procedure for aesthetic restoration of vital discoloured teeth. However, dental bleaching agents may represent a hazard to human health, especially by causing DNA strand breaks. Genotoxicity tests form an important part of cancer research and risk assessment of potential carcinogens. In the current study, the genotoxic potential associated with exposure to dental bleaching agents was assessed by the single cell gel (comet) assay in vitro. Six commercial dental bleaching agents (Clarigel Gold - Dentsply; Whitespeed - Discus Dental; Nite White - Discus Dental; Magic Bleaching - Vigodent; Whiteness HP - FGM and Lase Peroxide - DMC) were exposed to mouse lymphoma cells in vitro. The results pointed out that all dental bleaching agents tested contributed to the DNA damage as depicted by the mean tail moment. Clear concentration-related effects were obtained for DNA damaging, being the strongest effect observed at the highest dose of the hydrogen peroxide (Whiteness HP and Lase Peroxide, at 35% concentration). on the contrary, Whitespeed (Discus Dental) induced the lowest level of DNA breakage. Taken together, these results suggest that dental bleaching agents may be a factor that increases the level of DNA damage as detected by the single cell gel (comet) assay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. Formocresol, paramonochlorophenol, or calcium hydroxide have been widely used in dental practice to eradicate bacteria and consequently to produce root canal disinfection. Taking into consideration strong evidence for a relationship between DNA damage and carcinogenesis, the purpose of the present study was to evaluate the genotoxic effects of antimicrobial endodontic compounds in human peripheral lymphocytes by single-cell gel ( comet) assay. This technique detects DNA strand breaks in individual cells.Study design. A total of 10 mu L of the tested substance solution (formocreso1, paramonochlorofeno1, and calcium hydroxide at 100-mu g/mL concentration) was added to human peripheral lymphocytes from 10 volunteers for 1 hour at 37 degrees C. The negative control group was treated with vehicle control (PBS) for 1 hour at 37 degrees C, as well. For the positive control group, lymphocytes were exposed to hydrogen peroxide at 100 mu M during 5 minutes on ice.Results. No DNA breakage was detected after a treatment of peripheral lymphocytes by formocresol, paramonochlorophenol, or calcium hydroxide at 100 mu g/mL.Conclusions. In summary, our results indicate that exposure to formocresol, paramonochlorophenol, or calcium hydroxide may not be a factor that increases the level of DNA lesions in human peripheral lymphocytes as detected by single-cell gel (comet) assay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paracoccidioidomycosis is a systemic fungal infection caused by Paracoccidioides brasiliensis. As infectious diseases can cause DNA damage, the authors aimed at analyzing DNA breakage in peripheral blood cells of patients with paracoccidioidomycosis by using the comet assay. The results suggested that paracoccidioidomycosis does not cause genotoxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cisplatin is an effective antineoplastic drug. However, it provokes considerable collateral effects, including genotoxic and clastogenic activity. It has been reported that a diet rich in glutamine can help inhibit such collateral effects. We evaluated this activity in 40 Swiss mice, distributed into eight experimental groups: G1 - Control group (PBS 0.1 mL/10g body weight); G2 - cisplatin group (cisplatin 6 mg/kg intraperitoneally); G3, G4, G5 - glutamine groups (glutamine at 150, 300, and 600 mg/kg, respectively; orally); G6, G7, G8 - Pre-treatment groups (glutamine at 150, 300, and 600 mg/kg, respectively; orally and cisplatin 6 mg/kg intraperitonially). For the micronucleus assay, samples of blood were collected (before the first use of the drugs at T0, then 24 (T1) and 48 (T2) hours after the first administration). For the comet assay, blood samples were collected only at T2. The damage reduction percentages for the micronucleus assay were 90.0, 47.3, and 37.3% at T1 and 46.0, 38.6, and 34.7% at T2, for G6, G7, and G8 groups, respectively. For the comet assay, the damage reduction percentages were 113.0, 117.4, and 115.0% for G6, G7, and G8, respectively. We conclude that glutamine is able to prevent genotoxic and clastogenic damages caused by cisplatin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human cytomegalovirus (HCMV) infection occurs early in life and leads to life-long viral persistence. An association between HCMV infection and malignant gliomas has been reported suggesting that HCMV may play a role in glioma pathogenesis. The reported effects of HCMV on cells suggest that it could facilitate accrual of genotoxic damage. We therefore tested the hypothesis that HCMV infection modifies the sensitivity of cells to genetic damage from environmental insults such as γ-irradiation. Peripheral blood lymphocytes from 110 glioma patients and 100 controls were used to measure the level of both chromosome damage and cell death as endpoints for genetic instability. For each study participant, the extent of baseline, HCMV-, γ-radiation- and both – induced genetic instability was evaluated. Radiation induced a significant increase in aberration frequency over baseline in both cases and controls. Similarly, HCMV induced a significant increase in aberration frequency regardless of the disease status. Interestingly, HCMV induced damage was either equal or higher than that induced by radiation. Infected with HCMV prior to challenge with γ-radiation demonstrated a significant increase in the aberration frequency as compared to baseline, radiation- or HCMV-treated cells. With regards to apoptosis, cases showed a lower percentage of induction following in vitro exposure to γ-radiation and/or HCMV infection. The level of apoptosis was inversely related to the amount of chromosome damage in the cases, but not in the controls. These data indicate that, HCMV infection enhances the sensitivity of PBLs to γ-radiation-induced genetic damage.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A clone of the primary Eco R1 family of human DNA sequences has been used as an indicator sequence for detecting alterations induced by a toxic agent. Specific clones of this family have been examined and compared to the consensus sequence to determine the normal variability of this family. Though variations were observed, data indicated that such clones can be used to study induced DNA modifications. This DNA was exposed to the toxic agent dimethyl sulfate under various conditions and a distinct pattern of aberrations was shown to occur. It is suggested that this approach be used to characterize patterns of damage induced by various agents in the ultimate development of a system capable of monitoring human genotoxic exposure. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study was designed to evaluate the toxicogenetic or protective effect of cooked and dehydrated black beans (Phaseolus vulgaris L.) in bone marrow and peripheral blood cells of exposed mice. The frequency of micronuclei detected using the bone marrow erythrocyte micronucleus test and level of DNA lesions detected by the comet assay were chosen as end-points reflecting mutagenic and genotoxic damage, respectively. Initially, Swiss male mice were fed with a 20% black bean diet in order to detect mutagenic and genotoxic activity. However, no increase in the frequency of bone marrow micronucleated polychromatic erythrocytes (MN PCEs) or DNA lesion in leukocytes was observed. In contrast, received diets containing 1, 10 or 20% of black beans, a clear, but not dose-dependent reduction in the frequency of MN PCEs were observed in animals simultaneously treated with cyclophosphamide, an indirect acting mutagen. Similar results were observed in leukocytes by the comet assay. Commercial anthocyanin was also tested in an attempt to identify the bean components responsible for this protective effect. However, instead of being protective, the flavonoid, at the highest dose administered (50 mg/kg bw), induced primary DNA lesion, as detected by the comet assay. These data indicate the importance of food components in preventing genetic damage induced by chemical mutagens, and also reinforce the role of toxicogenetic techniques in protecting human health. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Significant interindividual variations in health outcome may be caused by the inheritance of variant polymorphic genes, such as CYP2D6 and CYP2E1 for activation, and GSTM1 and GSTT1 for detoxification of chemicals. However. mechanistic studies linking the inheritance of predisposing genes with genotoxic effects towards cancer have yet to be systematically conducted. We have studied 54 lung cancer patients and 50 matched normal controls, who have been cigarette smokers, to elucidate the role of polymorphic genes in cancer. Our data indicates that the inheritance of unfavorable CYP2D6, CYP2E1, and GSTT1 genes is strongly correlated with the smoking-related lung cancer. For heavy cigarette smokers (> 30 pack-years), the smoking habit is the strongest predictor of lung cancer risk irrespective of the inheritance of unfavorable metabolizing genes. For moderate to light smokers (< 30 pack-years), the genetic predisposition plays on important role For the risk (odds ratio = 3.46; 95% CL = 0.46-40.2). Using a subgroup of the study population, we observed that cigarette smokers having the defective GST genes have significantly more chromosome aberrations as determined by the fluorescence-in-situ-hybridization (FISH) technique than smokers with the normal GST genes (P < 0.001). In conclusion, our study provides data to indicate that individuals who have inherited unfavorable metabolizing genes have increased body burden of toxicants to cause increased genetic damage and to have increased risk for cancer. Studies like ours can be used to understand the basis for interindividual variations in cancer outcome, to identify high risk individuals and to assess health risk. (C) 1997 Wiley Liss, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Toluene is an organic solvent used in numerous processes and products, including industrial paints. Toluene neurotoxicity and reproductive toxicity are well recognized: however, its genotoxicity is still under discussion, and toluene is not classified as a carcinogenic solvent. Using the comet assay and the micronucleus test for detection of possible genotoxic effects of toluene, we monitored industrial painters from Rio Grande do Sul, Brazil. The putative involvement of oxidative stress in genetic damage and the influences of age, smoking, alcohol consumption, and exposure time were also assessed. Although all biomarkers of toluene exposure were below the biological exposure limits, painters presented significantly higher DNA damage (comet assay) than the control group; however, in the micronucleus assay, no significant difference was observed. Painters also showed alterations in hepatic enzymes and albumin levels, as well as oxidative damage, suggesting the involvement of oxidative stress. According to multiple linear regression analysis, blood toluene levels may account for the increased DNA damage in painters. In summary, this study showed that low levels of toluene exposure can cause genetic damage, and this is related to oxidative stress, age, and time of exposure. (C) 2012 Elsevier B.V. All rights reserved.