981 resultados para GENERALIZED PSEUDOSPECTRAL METHOD
Resumo:
This paper discusses the consistent regularization property of the generalized α method when applied as an integrator to an initial value high index and singular differential-algebraic equation model of a multibody system. The regularization comes from within the discretization itself and the discretization remains consistent over the range of values the regularization parameter may take. The regularization involves increase of the smallest singular values of the ill-conditioned Jacobian of the discretization and is different from Baumgarte and similar techniques which tend to be inconsistent for poor choice of regularization parameter. This regularization also helps where pre-conditioning the Jacobian by scaling is of limited effect, for example, when the scleronomic constraints contain multiple closed loops or singular configuration or when high index path constraints are present. The feed-forward control in Kane's equation models is additionally considered in the numerical examples to illustrate the effect of regularization. The discretization presented in this work is adopted to the first order DAE system (unlike the original method which is intended for second order systems) for its A-stability and same order of accuracy for positions and velocities.
Resumo:
In this paper we develop a new approach to sparse principal component analysis (sparse PCA). We propose two single-unit and two block optimization formulations of the sparse PCA problem, aimed at extracting a single sparse dominant principal component of a data matrix, or more components at once, respectively. While the initial formulations involve nonconvex functions, and are therefore computationally intractable, we rewrite them into the form of an optimization program involving maximization of a convex function on a compact set. The dimension of the search space is decreased enormously if the data matrix has many more columns (variables) than rows. We then propose and analyze a simple gradient method suited for the task. It appears that our algorithm has best convergence properties in the case when either the objective function or the feasible set are strongly convex, which is the case with our single-unit formulations and can be enforced in the block case. Finally, we demonstrate numerically on a set of random and gene expression test problems that our approach outperforms existing algorithms both in quality of the obtained solution and in computational speed. © 2010 Michel Journée, Yurii Nesterov, Peter Richtárik and Rodolphe Sepulchre.
Resumo:
We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E(N+1) - E(n))t). The gap E(N+1) - E(n) can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m(b) in HQET.
Resumo:
"UILU-ENG 78 1738."
Resumo:
Using a nonperturbative quantum scattering theory, the photoelectron angular distributions (PADs) from the multiphoton detachment of H- ions in strong, linearly polarized infrared laser fields are obtained to interpret recent experimental observations. In our theoretical treatment, the PADs in n-photon detachment are determined by the nth-order generalized phased Bessel (GPB) functions X-n(Z(f),eta). The advantage of using the GPB scenario to calculate PADs is its simplicity: a single special function (GPB) without any mixing coefficient can express PADs observed by recent experiments. Thus, the GPB scenario can be called a parameterless scenario.
Resumo:
A new numerical method for solving the axisymmetric unsteady incompressible Navier-Stokes equations using vorticity-velocity variables and a staggered grid is presented. The solution is advanced in time with an explicit two-stage Runge-Kutta method. At each stage a vector Poisson equation for velocity is solved. Some important aspects of staggering of the variable location, divergence-free correction to the velocity held by means of a suitably chosen scalar potential and numerical treatment of the vorticity boundary condition are examined. The axisymmetric spherical Couette flow between two concentric differentially rotating spheres is computed as an initial value problem. Comparison of the computational results using a staggered grid with those using a non-staggered grid shows that the staggered grid is superior to the non-staggered grid. The computed scenario of the transition from zero-vortex to two-vortex flow at moderate Reynolds number agrees with that simulated using a pseudospectral method, thus validating the temporal accuracy of our method.
Resumo:
In this work we study, in the framework of Colombeau`s generalized functions, the Hamilton-Jacobi equation with a given initial condition. We have obtained theorems on existence of solutions and in some cases uniqueness. Our technique is adapted from the classical method of characteristics with a wide use of generalized functions. We were led also to obtain some general results on invertibility and also on ordinary differential equations of such generalized functions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We suggest a pseudospectral method for solving the three-dimensional time-dependent Gross-Pitaevskii (GP) equation, and use it to study the resonance dynamics of a trapped Bose-Einstein condensate induced by a periodic variation in the atomic scattering length. When the frequency of oscillation of the scattering length is an even multiple of one of the trapping frequencies along the x, y or z direction, the corresponding size of the condensate executes resonant oscillation. Using the concept of the differentiation matrix, the partial-differential GP equation is reduced to a set of coupled ordinary differential equations, which is solved by a fourth-order adaptive step-size control Runge-Kutta method. The pseudospectral method is contrasted with the finite-difference method for the same problem, where the time evolution is performed by the Crank-Nicholson algorithm. The latter method is illustrated to be more suitable for a three-dimensional standing-wave optical-lattice trapping potential.
Resumo:
The vibration analysis of an elastic container with partially filled fluid was investigated in this paper. The container is made of a thin cylinder and two circular plates at the ends. The axis of the cylinder is in the horizontal direction. It is difficult to solve this problem because the complex system is not axially symmetric. The equations of motion for this system were derived. An incompressible and ideal fluid model is used in the present work. Solutions of the equations were obtained by the generalized variational method. The solution was expressed in a series of normalized generalized Fourier's functions. This series converged rapidly, and so its approximate solution was obtained with high precision. The agreement of the calculated values with the experimental result is good. It should be mentioned that with our method, the computer time is less than that with the finite-element method.
Resumo:
针对二维和三维边坡,通过对极限平衡分析结果所依赖的各种因素的分析,探讨了确定安全系数的必要和充分条件.建立了针对不同假设条件的安全系数的解析表达式.这些结果可以使得对极限平衡方法结果的上、下限的估计成为可能.
Resumo:
Abstract to Part I
The inverse problem of seismic wave attenuation is solved by an iterative back-projection method. The seismic wave quality factor, Q, can be estimated approximately by inverting the S-to-P amplitude ratios. Effects of various uncertain ties in the method are tested and the attenuation tomography is shown to be useful in solving for the spatial variations in attenuation structure and in estimating the effective seismic quality factor of attenuating anomalies.
Back-projection attenuation tomography is applied to two cases in southern California: Imperial Valley and the Coso-Indian Wells region. In the Coso-Indian Wells region, a highly attenuating body (S-wave quality factor (Q_β ≈ 30) coincides with a slow P-wave anomaly mapped by Walck and Clayton (1987). This coincidence suggests the presence of a magmatic or hydrothermal body 3 to 5 km deep in the Indian Wells region. In the Imperial Valley, slow P-wave travel-time anomalies and highly attenuating S-wave anomalies were found in the Brawley seismic zone at a depth of 8 to 12 km. The effective S-wave quality factor is very low (Q_β ≈ 20) and the P-wave velocity is 10% slower than the surrounding areas. These results suggest either magmatic or hydrothermal intrusions, or fractures at depth, possibly related to active shear in the Brawley seismic zone.
No-block inversion is a generalized tomographic method utilizing the continuous form of an inverse problem. The inverse problem of attenuation can be posed in a continuous form , and the no-block inversion technique is applied to the same data set used in the back-projection tomography. A relatively small data set with little redundancy enables us to apply both techniques to a similar degree of resolution. The results obtained by the two methods are very similar. By applying the two methods to the same data set, formal errors and resolution can be directly computed for the final model, and the objectivity of the final result can be enhanced.
Both methods of attenuation tomography are applied to a data set of local earthquakes in Kilauea, Hawaii, to solve for the attenuation structure under Kilauea and the East Rift Zone. The shallow Kilauea magma chamber, East Rift Zone and the Mauna Loa magma chamber are delineated as attenuating anomalies. Detailed inversion reveals shallow secondary magma reservoirs at Mauna Ulu and Puu Oo, the present sites of volcanic eruptions. The Hilina Fault zone is highly attenuating, dominating the attenuating anomalies at shallow depths. The magma conduit system along the summit and the East Rift Zone of Kilauea shows up as a continuous supply channel extending down to a depth of approximately 6 km. The Southwest Rift Zone, on the other hand, is not delineated by attenuating anomalies, except at a depth of 8-12 km, where an attenuating anomaly is imaged west of Puu Kou. The Ylauna Loa chamber is seated at a deeper level (about 6-10 km) than the Kilauea magma chamber. Resolution in the Mauna Loa area is not as good as in the Kilauea area, and there is a trade-off between the depth extent of the magma chamber imaged under Mauna Loa and the error that is due to poor ray coverage. Kilauea magma chamber, on the other hand, is well resolved, according to a resolution test done at the location of the magma chamber.
Abstract to Part II
Long period seismograms recorded at Pasadena of earthquakes occurring along a profile to Imperial Valley are studied in terms of source phenomena (e.g., source mechanisms and depths) versus path effects. Some of the events have known source parameters, determined by teleseismic or near-field studies, and are used as master events in a forward modeling exercise to derive the Green's functions (SH displacements at Pasadena that are due to a pure strike-slip or dip-slip mechanism) that describe the propagation effects along the profile. Both timing and waveforms of records are matched by synthetics calculated from 2-dimensional velocity models. The best 2-dimensional section begins at Imperial Valley with a thin crust containing the basin structure and thickens towards Pasadena. The detailed nature of the transition zone at the base of the crust controls the early arriving shorter periods (strong motions), while the edge of the basin controls the scattered longer period surface waves. From the waveform characteristics alone, shallow events in the basin are easily distinguished from deep events, and the amount of strike-slip versus dip-slip motion is also easily determined. Those events rupturing the sediments, such as the 1979 Imperial Valley earthquake, can be recognized easily by a late-arriving scattered Love wave that has been delayed by the very slow path across the shallow valley structure.
Resumo:
Compared with the conventional P wave, multi-component seismic data can markedly provide more information, thus improve the quality of reservoir evaluation like formation evaluation etc. With PS wave, better imaging result can be obtained especially in areas involved with gas chimney and high velocity formation. However, the signal-to-noise of multi-component seismic data is normally lower than that of the conventional P wave seismic data, while the frequency range of converted wave is always close to that of the surface wave which adds to the difficulty of removing surface wave. To realize common reflection point data stacking from extracted common conversion point data is a hard nut to crack. The s wave static correction of common receiver point PS wave data is not easy neither. In a word, the processing of multi-component seismic data is more complicated than P wave data. This paper shows some work that has been done, addressing those problems mentioned above. (1) Based on the AVO feature of converted wave, this paper has realized the velocity spectrum of converted waves by using Sarkar’s generalized semblance method taking into account of AVO factor in velocity analysis. (2)We achieve a method of smoothly offset division normal method.Firstly we scan the stacking velocities in different offset divisions for a t0, secondly obtain some hyperbolas using these stacking velocities, then get the travel time for every trace using these hyperbolas; in the end we interpolate the normal move out between two t0 for every trace. (3) Here realize a method of stepwise offset division normal moveout.It is similar to the method of smoothly offset division normal moveout.The main difference is using quadratic curve, sixth order curve or fraction curve to fit these hyperbolas. (4)In this paper, 4 types of travel time versus distance functions in inhomogeneous media whose velocity or slowness varies with depth and vertical travel time have been discussed and used to approximate reflection travel time. The errors of ray path and travel time based on those functions in four layered models were analyzed, and it has shown that effective results of NMO in synthetic or real data can be obtained. (5) The velocity model of converted PS-wave can be considered as that of P -wave based on the ghost source theory, thus the converted wave travel time can be approximated by calculation from 4 equivalent velocity functions: velocity or slowness vary linearly with depth or vertical travel time. Then combining with P wave velocity analysis, the converted wave data can be corrected directly to the P-wave vertical travel time. The improvements were shown in Normal Move out of converted waves with numerical examples and real data. (6) This paper introduces the methods to compute conversion point location in vertical inhomogeneous media based on linear functions of velocity or slowness versus depth or vertical travel time, and introduce three ways to choose appropriate equivalent velocity methods, which are velocity fitting, travel time approximation and semblance coefficient methods.
Resumo:
With the development of both seismic theory and computer technology, numerical modeling technology of seismic wave has achieved great advancement during the past half century. The current methods under development include finite differentiation method (FDM), finite element method (FEM), pseudospectral method (PSM), integral equation method (IEM) and spectral element method (SEM). They exert their very important roles in every corner of seismology and seismic prospecting. Large quantity of researches towards spectral element method in the end of last century bring this method to a new era, which results in perfect solution of many difficult problems. However, parts of posterior works such as seismic migration and inversion which base on spectral element method have never been studied widely at least up to the present whereas are of importance to seismic imaging and seismic wave propagation. Based on previous work, this paper uses spectral element method to investigate the characteristics and laws of the seismic wave propagation in isotropic and anisotropic media. By thoroughly studying this high-accuracy method, we implement a kind of reverse-time pre- and post-stack migration based on SEM. In order to verify the validity of the SEM method, we have simulated the propagation of seismic wave in several different models. The simulation results show that: (1) spectral element method can be used to model any complex models and the computational results are comparable with the expected results and the analytic results; (2) the optimum accuracy can be achieved when the rank is between 4 and 9. When it is below 4, the dispersion may occur; and when it is above 9, the time step-length will be changed accordingly with the reducing space step-length in order to keep the computation stability. This will exponentially increase the computation time and at the same time the memory even if simulating the same media. This paper also applies explosive reflection surface imaging technology, time constancy principle of wave-filed extrapolation and least travetime raytracing technology of surface source to SEM pre- and post-stack migration of isotropic and anisotropic media. All imaging results derived by the above methods agree well with the real geological models and the position of interface and inflexions can also return to their right location well. This indicates that the method proposed in this paper is a kind of technology with high accuracy and robust stability. It can serve as an alternative method in real seismic data processing. All these work can boost the development of high-accuracy seismic imaging, and therefore have significant inference value.