多波多分量地震资料走时近似方法的研究与应用
Contribuinte(s) |
杨长春 |
---|---|
Data(s) |
13/06/2007
|
Resumo |
Compared with the conventional P wave, multi-component seismic data can markedly provide more information, thus improve the quality of reservoir evaluation like formation evaluation etc. With PS wave, better imaging result can be obtained especially in areas involved with gas chimney and high velocity formation. However, the signal-to-noise of multi-component seismic data is normally lower than that of the conventional P wave seismic data, while the frequency range of converted wave is always close to that of the surface wave which adds to the difficulty of removing surface wave. To realize common reflection point data stacking from extracted common conversion point data is a hard nut to crack. The s wave static correction of common receiver point PS wave data is not easy neither. In a word, the processing of multi-component seismic data is more complicated than P wave data. This paper shows some work that has been done, addressing those problems mentioned above. (1) Based on the AVO feature of converted wave, this paper has realized the velocity spectrum of converted waves by using Sarkar’s generalized semblance method taking into account of AVO factor in velocity analysis. (2)We achieve a method of smoothly offset division normal method.Firstly we scan the stacking velocities in different offset divisions for a t0, secondly obtain some hyperbolas using these stacking velocities, then get the travel time for every trace using these hyperbolas; in the end we interpolate the normal move out between two t0 for every trace. (3) Here realize a method of stepwise offset division normal moveout.It is similar to the method of smoothly offset division normal moveout.The main difference is using quadratic curve, sixth order curve or fraction curve to fit these hyperbolas. (4)In this paper, 4 types of travel time versus distance functions in inhomogeneous media whose velocity or slowness varies with depth and vertical travel time have been discussed and used to approximate reflection travel time. The errors of ray path and travel time based on those functions in four layered models were analyzed, and it has shown that effective results of NMO in synthetic or real data can be obtained. (5) The velocity model of converted PS-wave can be considered as that of P -wave based on the ghost source theory, thus the converted wave travel time can be approximated by calculation from 4 equivalent velocity functions: velocity or slowness vary linearly with depth or vertical travel time. Then combining with P wave velocity analysis, the converted wave data can be corrected directly to the P-wave vertical travel time. The improvements were shown in Normal Move out of converted waves with numerical examples and real data. (6) This paper introduces the methods to compute conversion point location in vertical inhomogeneous media based on linear functions of velocity or slowness versus depth or vertical travel time, and introduce three ways to choose appropriate equivalent velocity methods, which are velocity fitting, travel time approximation and semblance coefficient methods. |
Identificador | |
Idioma(s) |
中文 |
Fonte |
多波多分量地震资料走时近似方法的研究与应用.陈雨红[d].中国科学院地质与地球物理研究所,2007.20-25 |
Palavras-Chave | #速度谱 #相似 #速度分析 #正常时差动校正 #非均匀介质 #转换波 #转换点 #走时近似 |
Tipo |
学位论文 |