981 resultados para GENERALIZED LOG-GAMMA DISTRIBUTION
Resumo:
We propose robust estimators of the generalized log-gamma distribution and, more generally, of location-shape-scale families of distributions. A (weighted) Q tau estimator minimizes a tau scale of the differences between empirical and theoretical quantiles. It is n(1/2) consistent; unfortunately, it is not asymptotically normal and, therefore, inconvenient for inference. However, it is a convenient starting point for a one-step weighted likelihood estimator, where the weights are based on a disparity measure between the model density and a kernel density estimate. The one-step weighted likelihood estimator is asymptotically normal and fully efficient under the model. It is also highly robust under outlier contamination. Supplementary materials are available online.
Resumo:
In this paper, the generalized log-gamma regression model is modified to allow the possibility that long-term survivors may be present in the data. This modification leads to a generalized log-gamma regression model with a cure rate, encompassing, as special cases, the log-exponential, log-Weibull and log-normal regression models with a cure rate typically used to model such data. The models attempt to simultaneously estimate the effects of explanatory variables on the timing acceleration/deceleration of a given event and the surviving fraction, that is, the proportion of the population for which the event never occurs. The normal curvatures of local influence are derived under some usual perturbation schemes and two martingale-type residuals are proposed to assess departures from the generalized log-gamma error assumption as well as to detect outlying observations. Finally, a data set from the medical area is analyzed.
Resumo:
In a sample of censored survival times, the presence of an immune proportion of individuals who are not subject to death, failure or relapse, may be indicated by a relatively high number of individuals with large censored survival times. In this paper the generalized log-gamma model is modified for the possibility that long-term survivors may be present in the data. The model attempts to separately estimate the effects of covariates on the surviving fraction, that is, the proportion of the population for which the event never occurs. The logistic function is used for the regression model of the surviving fraction. Inference for the model parameters is considered via maximum likelihood. Some influence methods, such as the local influence and total local influence of an individual are derived, analyzed and discussed. Finally, a data set from the medical area is analyzed under the log-gamma generalized mixture model. A residual analysis is performed in order to select an appropriate model.
Resumo:
In this paper, we propose a random intercept Poisson model in which the random effect is assumed to follow a generalized log-gamma (GLG) distribution. This random effect accommodates (or captures) the overdispersion in the counts and induces within-cluster correlation. We derive the first two moments for the marginal distribution as well as the intraclass correlation. Even though numerical integration methods are, in general, required for deriving the marginal models, we obtain the multivariate negative binomial model from a particular parameter setting of the hierarchical model. An iterative process is derived for obtaining the maximum likelihood estimates for the parameters in the multivariate negative binomial model. Residual analysis is proposed and two applications with real data are given for illustration. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A four-parameter extension of the generalized gamma distribution capable of modelling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma and generalized Rayleigh, among others. We derive two infinite sum representations for its moments. We calculate the density of the order statistics and two expansions for their moments. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is obtained. Finally, a real data set from the medical area is analysed.
Resumo:
The inverse Weibull distribution has the ability to model failure rates which are quite common in reliability and biological studies. A three-parameter generalized inverse Weibull distribution with decreasing and unimodal failure rate is introduced and studied. We provide a comprehensive treatment of the mathematical properties of the new distribution including expressions for the moment generating function and the rth generalized moment. The mixture model of two generalized inverse Weibull distributions is investigated. The identifiability property of the mixture model is demonstrated. For the first time, we propose a location-scale regression model based on the log-generalized inverse Weibull distribution for modeling lifetime data. In addition, we develop some diagnostic tools for sensitivity analysis. Two applications of real data are given to illustrate the potentiality of the proposed regression model.
Resumo:
In this article, we compare three residuals based on the deviance component in generalised log-gamma regression models with censored observations. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and the empirical distribution of each residual is displayed and compared with the standard normal distribution. For all cases studied, the empirical distributions of the proposed residuals are in general symmetric around zero, but only a martingale-type residual presented negligible kurtosis for the majority of the cases studied. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for the martingale-type residual in generalised log-gamma regression models with censored data. A lifetime data set is analysed under log-gamma regression models and a model checking based on the martingale-type residual is performed.
Resumo:
The modeling and analysis of lifetime data is an important aspect of statistical work in a wide variety of scientific and technological fields. Good (1953) introduced a probability distribution which is commonly used in the analysis of lifetime data. For the first time, based on this distribution, we propose the so-called exponentiated generalized inverse Gaussian distribution, which extends the exponentiated standard gamma distribution (Nadarajah and Kotz, 2006). Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters. The usefulness of the new model is illustrated by means of a real data set. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
A four parameter generalization of the Weibull distribution capable of modeling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone as well as non-monotone failure rates, which are quite common in lifetime problems and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the Weibull, extreme value, exponentiated Weibull, generalized Rayleigh and modified Weibull distributions, among others. We derive two infinite sum representations for its moments. The density of the order statistics is obtained. The method of maximum likelihood is used for estimating the model parameters. Also, the observed information matrix is obtained. Two applications are presented to illustrate the proposed distribution. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems. In this setting, recent works have shown how to get a statistics of extremes in agreement with the classical Extreme Value Theory. We pursue these investigations by giving analytical expressions of Extreme Value distribution parameters for maps that have an absolutely continuous invariant measure. We compare these analytical results with numerical experiments in which we study the convergence to limiting distributions using the so called block-maxima approach, pointing out in which cases we obtain robust estimation of parameters. In regular maps for which mixing properties do not hold, we show that the fitting procedure to the classical Extreme Value Distribution fails, as expected. However, we obtain an empirical distribution that can be explained starting from a different observable function for which Nicolis et al. (Phys. Rev. Lett. 97(21): 210602, 2006) have found analytical results.
Resumo:
The generalized Birnbaum-Saunders distribution pertains to a class of lifetime models including both lighter and heavier tailed distributions. This model adapts well to lifetime data, even when outliers exist, and has other good theoretical properties and application perspectives. However, statistical inference tools may not exist in closed form for this model. Hence, simulation and numerical studies are needed, which require a random number generator. Three different ways to generate observations from this model are considered here. These generators are compared by utilizing a goodness-of-fit procedure as well as their effectiveness in predicting the true parameter values by using Monte Carlo simulations. This goodness-of-fit procedure may also be used as an estimation method. The quality of this estimation method is studied here. Finally, through a real data set, the generalized and classical Birnbaum-Saunders models are compared by using this estimation method.
Resumo:
In this paper we present an extension of the generalized Birnbaum-Saunders distribution family introduced in [Diaz-Garcia, J.A., Leiva-Sanchez, V., 2005. A new family of life distributions based on the contoured elliptically distributions. Journal of Statistical Planning and Inference 128 (2), 445-457] with a view to make it even more flexible in terms of its kurtosis coefficient. Properties involving moments and asymmetry and kurtosis indexes are studied for some special members of this family such as the slash Birnbaum-Saunders and slash-t Birnbaum-Saunders. Simulation studies for some particular cases and a real data analysis are also reported, illustrating the usefulness of the extension considered. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper distinct prior distributions are derived in a Bayesian inference of the two-parameters Gamma distribution. Noniformative priors, such as Jeffreys, reference, MDIP, Tibshirani and an innovative prior based on the copula approach are investigated. We show that the maximal data information prior provides in an improper posterior density and that the different choices of the parameter of interest lead to different reference priors in this case. Based on the simulated data sets, the Bayesian estimates and credible intervals for the unknown parameters are computed and the performance of the prior distributions are evaluated. The Bayesian analysis is conducted using the Markov Chain Monte Carlo (MCMC) methods to generate samples from the posterior distributions under the above priors.