Bayesian inference for two-parameter gamma distribution assuming different noninformative priors


Autoria(s): Moala, Fernando Antonio; Ramos, Pedro Luiz; Achcar, Jorge Alberto
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

03/12/2014

03/12/2014

01/12/2013

Resumo

In this paper distinct prior distributions are derived in a Bayesian inference of the two-parameters Gamma distribution. Noniformative priors, such as Jeffreys, reference, MDIP, Tibshirani and an innovative prior based on the copula approach are investigated. We show that the maximal data information prior provides in an improper posterior density and that the different choices of the parameter of interest lead to different reference priors in this case. Based on the simulated data sets, the Bayesian estimates and credible intervals for the unknown parameters are computed and the performance of the prior distributions are evaluated. The Bayesian analysis is conducted using the Markov Chain Monte Carlo (MCMC) methods to generate samples from the posterior distributions under the above priors.

Formato

321-338

Identificador

http://revistas.unal.edu.co/index.php/estad/article/view/44351

Revista Colombiana de Estadistica. Bogota Dc: Univ Nac Colombia, Dept Estadistica, v. 36, n. 2, p. 321-338, 2013.

0120-1751

http://hdl.handle.net/11449/112051

WOS:000331380600009

WOS000331380600009.pdf

Idioma(s)

eng

Publicador

Univ Nac Colombia, Dept Estadistica

Relação

Revista Colombiana De Estadistica

Direitos

openAccess

Palavras-Chave #Gamma distribution #noninformative prior #copula #conjugate #Jeffreys prior #reference #MDIP #orthogonal #MCMC
Tipo

info:eu-repo/semantics/article