903 resultados para GAUSSIAN CURVATURE
Resumo:
Liquid crystalline elastomers (LCEs) can undergo extremely large reversible shape changes when exposed to external stimuli, such as mechanical deformations, heating or illumination. The deformation of LCEs result from a combination of directional reorientation of the nematic director and entropic elasticity. In this paper, we study the energetics of initially flat, thin LCE membranes by stress driven reorientation of the nematic director. The energy functional used in the variational formulation includes contributions depending on the deformation gradient and the second gradient of the deformation. The deformation gradient models the in-plane stretching of the membrane. The second gradient regularises the non-convex membrane energy functional so that infinitely fine in-plane microstructures and infinitely fine out-of-plane membrane wrinkling are penalised. For a specific example, our computational results show that a non-developable surface can be generated from an initially flat sheet at cost of only energy terms resulting from the second gradients. That is, Gaussian curvature can be generated in LCE membranes without the cost of stretch energy in contrast to conventional materials. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The dynamics of a feedback-controlled rigid robot is most commonly described by a set of nonlinear ordinary differential equations. In this paper we analyze these equations, representing the feedback-controlled motion of two- and three-degrees-of-freedom rigid robots with revolute (R) and prismatic (P) joints in the absence of compliance, friction, and potential energy, for the possibility of chaotic motions. We first study the unforced or inertial motions of the robots, and show that when the Gaussian or Riemannian curvature of the configuration space of a robot is negative, the robot equations can exhibit chaos. If the curvature is zero or positive, then the robot equations cannot exhibit chaos. We show that among the two-degrees-of-freedom robots, the PP and the PR robot have zero Gaussian curvature while the RP and RR robots have negative Gaussian curvatures. For the three-degrees-of-freedom robots, we analyze the two well-known RRP and RRR configurations of the Stanford arm and the PUMA manipulator respectively, and derive the conditions for negative curvature and possible chaotic motions. The criteria of negative curvature cannot be used for the forced or feedback-controlled motions. For the forced motion, we resort to the well-known numerical techniques and compute chaos maps, Poincare maps, and bifurcation diagrams. Numerical results are presented for the two-degrees-of-freedom RP and RR robots, and we show that these robot equations can exhibit chaos for low controller gains and for large underestimated models. From the bifurcation diagrams, the route to chaos appears to be through period doubling.
Resumo:
Differential growth of thin elastic bodies furnishes a surprisingly simple explanation of the complex and intriguing shapes of many biological systems, such as plant leaves and organs. Similarly, inelastic strains induced by thermal effects or active materials in layered plates are extensively used to control the curvature of thin engineering structures. Such behaviour inspires us to distinguish and to compare two possible modes of differential growth not normally compared to each other, in order to reveal the full range of out-of-plane shapes of an initially flat disk. The first growth mode, frequently employed by engineers, is characterised by direct bending strains through the thickness, and the second mode, mainly apparent in biological systems, is driven by extensional strains of the middle surface. When each mode is considered separately, it is shown that buckling is common to both modes, leading to bistable shapes: growth from bending strains results in a double-curvature limit at buckling, followed by almost developable deformation in which the Gaussian curvature at buckling is conserved; during extensional growth, out-of-plane distortions occur only when the buckling condition is reached, and the Gaussian curvature continues to increase. When both growth modes are present, it is shown that, generally, larger displacements are obtained under in-plane growth when the disk is relatively thick and growth strains are small, and vice versa. It is also shown that shapes can be mono-, bi-, tri- or neutrally stable, depending on the growth strain levels and the material properties: furthermore, it is shown that certain combinations of growth modes result in a free, or natural, response in which the doubly curved shape of disk exactly matches the imposed strains. Such diverse behaviour, in general, may help to realise more effective actuation schemes for engineering structures. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Creasing in thin shells admits large deformation by concentrating curvatures while relieving stretching strains over the bulk of the shell: after unloading, the creases remain as narrow ridges and the rest of the shell is flat or simply curved. We present a helically creased unloaded shell that is doubly curved everywhere, which is formed by cylindrically wrapping a flat sheet with embedded foldlines not axially aligned. The finished shell is in a state of uniform self-stress and this is responsible for maintaining the Gaussian curvature outside of the creases in a controllable and persistent manner. We describe the overall shape of the shell using the familiar geometrical concept of a Mohr's circle applied to each of its constituent features-the creases, the regions between the creases, and the overall cylindrical form. These Mohr's circles can be combined in view of geometrical compatibility, which enables the observed shape to be accurately and completely described in terms of the helical pitch angle alone. Copyright © 2013 by ASME.
Resumo:
Dans cette thèse, nous analysons les propriétés géométriques des surfaces obtenues des solutions classiques des modèles sigma bosoniques et supersymétriques en deux dimensions ayant pour espace cible des variétés grassmanniennes G(m,n). Plus particulièrement, nous considérons la métrique, les formes fondamentales et la courbure gaussienne induites par ces surfaces naturellement plongées dans l'algèbre de Lie su(n). Le premier chapitre présente des outils préliminaires pour comprendre les éléments des chapitres suivants. Nous y présentons les théories de jauge non-abéliennes et les modèles sigma grassmanniens bosoniques ainsi que supersymétriques. Nous nous intéressons aussi à la construction de surfaces dans l'algèbre de Lie su(n) à partir des solutions des modèles sigma bosoniques. Les trois prochains chapitres, formant cette thèse, présentent les contraintes devant être imposées sur les solutions de ces modèles afin d'obtenir des surfaces à courbure gaussienne constante. Ces contraintes permettent d'obtenir une classification des solutions en fonction des valeurs possibles de la courbure. Les chapitres 2 et 3 de cette thèse présentent une analyse de ces surfaces et de leurs solutions classiques pour les modèles sigma grassmanniens bosoniques. Le quatrième consiste en une analyse analogue pour une extension supersymétrique N=2 des modèles sigma bosoniques G(1,n)=CP^(n-1) incluant quelques résultats sur les modèles grassmanniens. Dans le deuxième chapitre, nous étudions les propriétés géométriques des surfaces associées aux solutions holomorphes des modèles sigma grassmanniens bosoniques. Nous donnons une classification complète de ces solutions à courbure gaussienne constante pour les modèles G(2,n) pour n=3,4,5. De plus, nous établissons deux conjectures sur les valeurs constantes possibles de la courbure gaussienne pour G(m,n). Nous donnons aussi des éléments de preuve de ces conjectures en nous appuyant sur les immersions et les coordonnées de Plücker ainsi que la séquence de Veronese. Ces résultats sont publiés dans la revue Journal of Geometry and Physics. Le troisième chapitre présente une analyse des surfaces à courbure gaussienne constante associées aux solutions non-holomorphes des modèles sigma grassmanniens bosoniques. Ce travail généralise les résultats du premier article et donne un algorithme systématique pour l'obtention de telles surfaces issues des solutions connues des modèles. Ces résultats sont publiés dans la revue Journal of Geometry and Physics. Dans le dernier chapitre, nous considérons une extension supersymétrique N=2 du modèle sigma bosonique ayant pour espace cible G(1,n)=CP^(n-1). Ce chapitre décrit la géométrie des surfaces obtenues des solutions du modèle et démontre, dans le cas holomorphe, qu'elles ont une courbure gaussienne constante si et seulement si la solution holomorphe consiste en une généralisation de la séquence de Veronese. De plus, en utilisant une version invariante de jauge du modèle en termes de projecteurs orthogonaux, nous obtenons des solutions non-holomorphes et étudions la géométrie des surfaces associées à ces nouvelles solutions. Ces résultats sont soumis dans la revue Communications in Mathematical Physics.
Resumo:
Stimulation protocols for medical devices should be rationally designed. For episodic migraine with aura we outline model-based design strategies toward preventive and acute therapies using stereotactic cortical neuromodulation. To this end, we regard a localized spreading depression (SD) wave segment as a central element in migraine pathophysiology. To describe nucleation and propagation features of the SD wave segment, we define the new concepts of cortical hot spots and labyrinths, respectively. In particular, we firstly focus exclusively on curvature-induced dynamical properties by studying a generic reaction-diffusion model of SD on the folded cortical surface. This surface is described with increasing level of details, including finally personalized simulations using patient's magnetic resonance imaging (MRI) scanner readings. At this stage, the only relevant factor that can modulate nucleation and propagation paths is the Gaussian curvature, which has the advantage of being rather readily accessible by MRI. We conclude with discussing further anatomical factors, such as areal, laminar, and cellular heterogeneity, that in addition to and in relation to Gaussian curvature determine the generalized concept of cortical hot spots and labyrinths as target structures for neuromodulation. Our numerical simulations suggest that these target structures are like fingerprints, they are individual features of each migraine sufferer. The goal in the future will be to provide individualized neural tissue simulations. These simulations should predict the clinical data and therefore can also serve as a test bed for exploring stereotactic cortical neuromodulation.
Resumo:
Visual representations of isosurfaces are ubiquitous in the scientific and engineering literature. In this paper, we present techniques to assess the behavior of isosurface extraction codes. Where applicable, these techniques allow us to distinguish whether anomalies in isosurface features can be attributed to the underlying physical process or to artifacts from the extraction process. Such scientific scrutiny is at the heart of verifiable visualization - subjecting visualization algorithms to the same verification process that is used in other components of the scientific pipeline. More concretely, we derive formulas for the expected order of accuracy (or convergence rate) of several isosurface features, and compare them to experimentally observed results in the selected codes. This technique is practical: in two cases, it exposed actual problems in implementations. We provide the reader with the range of responses they can expect to encounter with isosurface techniques, both under ""normal operating conditions"" and also under adverse conditions. Armed with this information - the results of the verification process - practitioners can judiciously select the isosurface extraction technique appropriate for their problem of interest, and have confidence in its behavior.
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
We deal with homogeneous isotropic turbulence and use the two-point velocity correlation tensor field (parametrized by the time variable t) of the velocity fluctuations to equip an affine space K3 of the correlation vectors by a family of metrics. It was shown in Grebenev and Oberlack (J Nonlinear Math Phys 18:109–120, 2011) that a special form of this tensor field generates the so-called semi-reducible pseudo-Riemannian metrics ds2(t) in K3. This construction presents the template for embedding the couple (K3, ds2(t)) into the Euclidean space R3 with the standard metric. This allows to introduce into the consideration the function of length between the fluid particles, and the accompanying important problem to address is to find out which transformations leave the statistic of length to be invariant that presents a basic interest of the paper. Also we classify the geometry of the particles configuration at least locally for a positive Gaussian curvature of this configuration and comment the case of a negative Gaussian curvature.
Resumo:
Neste trabalho será demonstrada uma versão dos teoremas de Hilbert Liebmann para superfícies em S² x R e H² x R, que são teoremas de existência e unicidade de superfícies completas com curvatura Gaussiana constante nesses ambientes. Como parte da demonstração, a saber a existência, será apresentada uma classificação das superfícies de revolução completas com curvatura Gaussiana constante em torno de um eixo qualquer, em S² x R e em torno de um eixo lorentziano, em H² x R.
Resumo:
Given a 2manifold triangular mesh \(M \subset {\mathbb {R}}^3\), with border, a parameterization of \(M\) is a FACE or trimmed surface \(F=\{S,L_0,\ldots, L_m\}\) -- \(F\) is a connected subset or region of a parametric surface \(S\), bounded by a set of LOOPs \(L_0,\ldots ,L_m\) such that each \(L_i \subset S\) is a closed 1manifold having no intersection with the other \(L_j\) LOOPs -- The parametric surface \(S\) is a statistical fit of the mesh \(M\) -- \(L_0\) is the outermost LOOP bounding \(F\) and \(L_i\) is the LOOP of the ith hole in \(F\) (if any) -- The problem of parameterizing triangular meshes is relevant for reverse engineering, tool path planning, feature detection, redesign, etc -- Stateofart mesh procedures parameterize a rectangular mesh \(M\) -- To improve such procedures, we report here the implementation of an algorithm which parameterizes meshes \(M\) presenting holes and concavities -- We synthesize a parametric surface \(S \subset {\mathbb {R}}^3\) which approximates a superset of the mesh \(M\) -- Then, we compute a set of LOOPs trimming \(S\), and therefore completing the FACE \(F=\ {S,L_0,\ldots ,L_m\}\) -- Our algorithm gives satisfactory results for \(M\) having low Gaussian curvature (i.e., \(M\) being quasi-developable or developable) -- This assumption is a reasonable one, since \(M\) is the product of manifold segmentation preprocessing -- Our algorithm computes: (1) a manifold learning mapping \(\phi : M \rightarrow U \subset {\mathbb {R}}^2\), (2) an inverse mapping \(S: W \subset {\mathbb {R}}^2 \rightarrow {\mathbb {R}}^3\), with \ (W\) being a rectangular grid containing and surpassing \(U\) -- To compute \(\phi\) we test IsoMap, Laplacian Eigenmaps and Hessian local linear embedding (best results with HLLE) -- For the back mapping (NURBS) \(S\) the crucial step is to find a control polyhedron \(P\), which is an extrapolation of \(M\) -- We calculate \(P\) by extrapolating radial basis functions that interpolate points inside \(\phi (M)\) -- We successfully test our implementation with several datasets presenting concavities, holes, and are extremely nondevelopable -- Ongoing work is being devoted to manifold segmentation which facilitates mesh parameterization
Resumo:
Anisotropic gaussian beams are obtained as exact solutions to the parabolic wave equation. These beams have a quadratic phase front whose principal radii of curvature are non-degenerate everywhere. It is shown that, for the lowest order beams, there exists a plane normal to the beam axis where the intensity distribution is rotationally symmetric about the beam axis. A possible application of these beams as normal modes of laser cavities with astigmatic mirrors is noted.
Resumo:
A fuzzy logic system (FLS) with a new sliding window defuzzifier is proposed for structural damage detection using modal curvatures. Changes in the modal curvatures due to damage are fuzzified using Gaussian fuzzy sets and mapped to damage location and size using the FLS. The first four modal vectors obtained from finite element simulations of a cantilever beam are used for identifying the location and size of damage. Parametric studies show that modal curvatures can be used to accurately locate the damage; however, quantifying the size of damage is difficult. Tests with noisy simulated data show that the method detects damage very accurately at different noise levels and when some modal data are missing.
Resumo:
This thesis consists of four research papers and an introduction providing some background. The structure in the universe is generally considered to originate from quantum fluctuations in the very early universe. The standard lore of cosmology states that the primordial perturbations are almost scale-invariant, adiabatic, and Gaussian. A snapshot of the structure from the time when the universe became transparent can be seen in the cosmic microwave background (CMB). For a long time mainly the power spectrum of the CMB temperature fluctuations has been used to obtain observational constraints, especially on deviations from scale-invariance and pure adiabacity. Non-Gaussian perturbations provide a novel and very promising way to test theoretical predictions. They probe beyond the power spectrum, or two point correlator, since non-Gaussianity involves higher order statistics. The thesis concentrates on the non-Gaussian perturbations arising in several situations involving two scalar fields, namely, hybrid inflation and various forms of preheating. First we go through some basic concepts -- such as the cosmological inflation, reheating and preheating, and the role of scalar fields during inflation -- which are necessary for the understanding of the research papers. We also review the standard linear cosmological perturbation theory. The second order perturbation theory formalism for two scalar fields is developed. We explain what is meant by non-Gaussian perturbations, and discuss some difficulties in parametrisation and observation. In particular, we concentrate on the nonlinearity parameter. The prospects of observing non-Gaussianity are briefly discussed. We apply the formalism and calculate the evolution of the second order curvature perturbation during hybrid inflation. We estimate the amount of non-Gaussianity in the model and find that there is a possibility for an observational effect. The non-Gaussianity arising in preheating is also studied. We find that the level produced by the simplest model of instant preheating is insignificant, whereas standard preheating with parametric resonance as well as tachyonic preheating are prone to easily saturate and even exceed the observational limits. We also mention other approaches to the study of primordial non-Gaussianities, which differ from the perturbation theory method chosen in the thesis work.