998 resultados para GATA-1
Resumo:
The GATA family of transcription factors establishes genetic networks that control developmental processes including hematopoiesis, vasculogenesis, and cardiogenesis. We found that GATA-1 strongly activates transcription of the Tac-2 gene, which encodes proneurokinin-B, a precursor of neurokinin-B (NK-B). Neurokinins function through G protein-coupled transmembrane receptors to mediate diverse physiological responses including pain perception and the control of vascular tone. Whereas an elevated level of NK-B was implicated in pregnancy-associated pre-eclampsia ( Page, N. M., Woods, R. J., Gardiner, S. M., Lomthaisong, K., Gladwell, R. T., Butlin, D. J., Manyonda, I. T., and Lowry, P. J. ( 2000) Nature 405, 797 - 800), the regulation of NK-B synthesis and function are poorly understood. Tac-2 was expressed in normal murine erythroid cells and was induced upon ex vivo erythropoiesis. An estrogen receptor fusion to GATA-1 (ER-GATA-1) and endogenous GATA-1 both occupied a region of Tac-2 intron-7, which contains two conserved GATA motifs. Genetic complementation analysis in GATA-1-null G1E cells revealed that endogenous GATA-2 occupied the same region of intron-7, and expression of ER-GATA-1 displaced GATA-2 and activated Tac-2 transcription. Erythroid cells did not express neurokinin receptors, whereas aortic and yolk sac endothelial cells differentially expressed neurokinin receptor subtypes. Since NK-B induced cAMP accumulation in yolk sac endothelial cells, these results suggest a new mode of vascular regulation in which GATA-1 controls NK-B synthesis in erythroid cells.
Resumo:
Steroids hormones modify the hematological features of homozygous sickle cell disease, including the levels of fetal hemoglobin. We used semi-quantitative RT-PCR analysis of GATA-1, GATA-2, NF-E2, and gamma-globin mRNA levels in a two-phase liquid culture system of human adult erythroid cells in order to assay the effect of progesterone upon gene expression. The levels of expression of GATA-1 and gamma-globin mRNA were significantly increased in cells treated with progesterone compared to untreated cells (1.7- to 2.0-fold). Progesterone treatment did not produce any stimulatory effect upon GATA-2 and NF-E2 mRNA expression. Differences in the synthesis of HbF protein could not be detected by flow cytometry, although we observed a small difference in mean intensity fluorescence between cells treated and cells untreated with progesterone on days 7 and 9. Using anti-transferrin receptor and anti-glycophorin A antibodies, we verified that addition of progesterone did not cause any change in erythroid proliferation and differentiation. In conclusion, it is possible that the increased expression of gamma-globin mRNA after progesterone treatment observed in this study may be related to the increased GATA-1 mRNA expression. Interactions of the steroid receptors with the basal transcriptional machinery and with transcription factors might mediate their transcriptional effects. (C) 2002 Elsevier B.V. (USA).
Resumo:
The X chromosome-linked transcription factor GATA-1 is expressed specifically in erythroid, mast, megakaryocyte, and eosinophil lineages, as well as in hematopoietic progenitors. Prior studies revealed that gene-disrupted GATA-1- embryonic stem cells give rise to adult (or definitive) erythroid precursors arrested at the proerythroblast stage in vitro and fail to contribute to adult red blood cells in chimeric mice but did not clarify a role in embryonic (or yolk sac derived) erythroid cells. To examine the consequences of GATA-1 loss on embryonic erythropoiesis in vivo, we inactivated the GATA-1 locus in embryonic stem cells by gene targeting and transmitted the mutated allele through the mouse germ line. Male GATA-1- embryos die between embryonic day 10.5 and 11.5 (E10.5-E11.5) of gestation. At E9.5, GATA-1- embryos exhibit extreme pallor yet contain embryonic erythroid cells arrested at an early proerythroblast-like stage of their development. Embryos stain weakly with benzidine reagent, and yolk sac cells express globin RNAs, indicating globin gene activation in the absence of GATA-1. Female heterozygotes (GATA-1+/-) are born pale due to random inactivation of the X chromosome bearing the normal allele. However, these mice recover during the neonatal period, presumably as a result of in vivo selection for progenitors able to express GATA-1. Our findings conclusively establish the essential role for GATA-1 in erythropoiesis within the context of the intact developing mouse and further demonstrate that the block to cellular maturation is similar in GATA-1- embryonic and definitive erythroid precursors. Moreover, the recovery of GATA-1+/- mice from anemia seen at birth provides evidence indicating a role for GATA-1 at the hematopoietic progenitor cell level.
Resumo:
GATA-1 is a zinc-finger transcription factor that plays a critical role in the normal development of hematopoietic cell lineages. In human and murine erythroid cells a previously undescribed 40-kDa protein is detected with GATA-1-specific antibodies. We show that the 40-kDa GATA-1 (GATA-1s) is produced by the use of an internal AUG initiation codon in the GATA-1 transcript. The GATA-1 proteins share identical binding activity and form heterodimers in erythroleukemic cells but differ in their transactivation potential and in their expression in developing mouse embryos.
Resumo:
The transcription factor GATA-1 recognizes a consensus motif present in regulatory regions of numerous erythroid-expressed genes. Mouse embryonic stem cells lacking GATA-1 cannot form mature red blood cells in vivo. In vitro differentiation of GATA-1- embryonic stem cells gives rise to a population of committed erythroid precursors that exhibit developmental arrest and death. We show here that the demise of GATA-1- erythroid cells is accompanied by several features characteristics of apoptosis. This process occurs despite normal expression of all known GATA target genes examined, including the erythropoietin receptor, and independent of detectable accumulation of the tumor suppressor protein p53. Thus, in addition to its established role in regulating genes that define the erythroid phenotype, GATA-1 also supports the viability of red cell precursors by suppressing apoptosis. These results illustrate the multifunctional nature of GATA-1 and suggest a mechanism by which other hematopoietic transcription factors may ensure the development of specific lineages.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The Wilms' tumor 1 gene (WT1) encodes a zinc-finger transcription factor and is expressed in urogenital, hematopoietic and other tissues. It is expressed in a temporal and spatial manner in both embryonic and adult stages. To obtain a better understanding of the biological function of WT1, we studied two aspects of WT1 regulation: one is the identification of tissue-specific cis-regulatory elements that regulate its expression, the other is the downstream genes which are modulated by WT1.^ My studies indicate that in addition to the promoter, other regulatory elements are required for the tissue specific expression of this gene. A 259-bp hematopoietic specific enhancer in intron 3 of the WT1 gene increased the transcriptional activity of the WT1 promoter by 8- to 10-fold in K562 and HL60 cells. Sequence analysis revealed both GATA and c-Myb motifs in the enhancer fragment. Mutation of the GATA motif decreased the enhancer activity by 60% in K562 cells. Electrophoretic mobility shift assays showed that both GATA-1 and GATA-2 proteins in K562 nuclear extracts bind to this motif. Cotransfection of the enhancer containing reporter construct with a GATA-1 or GATA-2 expression vector showed that both GATA-1 and GATA-2 transactivated this enhancer, increasing the CAT reporter activity 10-15 fold and 5-fold respectively. Similar analysis of the c-Myb motif by cotransfection with the enhancer CAT reporter construct and a c-Myb expression vector showed that c-Myb transactivated the enhancer by 5-fold. A DNase I-hypersensitive site has been identified in the 258 bp enhancer region. These data suggest that GATA-1 and c-Myb are responsible for the activity of this enhancer in hematopoietic cells and may bind to the enhancer in vivo. In the process of searching for cis-regulatory elements in transgenic mice, we have identified a 1.0 kb fragment that is 50 kb downstream from the promoter and is required for the central nervous system expression of WT1.^ In the search for downstream target genes of WT1, we noted that the proto-oncogene N-myc is coexpressed with the tumor suppressor gene WT1 in the developing kidney and is overexpressed in many Wilms' tumors. Sequence analysis revealed eleven consensus WT1 binding sites located in the 1 kb mouse N-myc promoter. We further showed that the N-myc promoter was down-regulated by WT1 in transient transfection assays. Electrophoretic mobility shift assays showed that oligonucleotides containing the WT1 motifs could bind WT1 protein. Furthermore, a Denys-Drash syndrome mutant of WT1, R394W, that has a mutation in the DNA binding domain, failed to repress the N-myc promoter. This suggests that the repression of the N-myc promoter is mediated by DNA binding of WT1. This finding helps to elucidate the relationship of WT1 and N-myc in tumorigenesis and renal development. ^
Resumo:
Pluripotent hematopoietic stem cells (PHSCs) were highly enriched from mouse bone marrow by counterflow centrifugal elutriation, lineage subtraction, and fluorescence-activated cell sorting based on high c-kit receptor expression (c-kitBR). We used reverse transcriptase polymerase chain reaction to assay the c-kitBR subset and the subsets expressing low (c-kitDULL) and no (c-kitNEG) c-kit receptor for expression of mRNA encoding hematopoietic growth factor receptors and transcription factors. The c-kitBR cells had approximately 3.5-fold more c-kit mRNA than unfractionated bone marrow cells. The c-kitDULL cells had 47-58% of the c-kit mRNA found in c-kitBR cells and the c-kitNEG cells had 4-9% of the c-kit mRNA present in c-kitBR cells. By comparing mRNA levels in c-kitBR cells (enriched for PHSCs) with those of unfractionated bone marrow, we demonstrated that c-kitBR cells contained low or undetectable levels of mRNA for c-fms, granulocyte colony-stimulating factor receptor, interleukin 5 receptor (IL-5R), and IL-7R. These same cells had moderate levels of mRNA for erythropoietin receptor, IL-3R subunits IL-3R alpha (SUT-1), AIC-2A, and AIC-2B, IL-6R and its partner gp-130, and the transcription factor GATA-1 and high levels of mRNA for transcription factors GATA-2, p45 NF-E2, and c-myb. We conclude from these findings that PHSCs are programmed to interact with stem cell factor, IL-3, and IL-6 but not with granulocyte or macrophage colony-stimulating factor. These findings also indicate that GATA-2, p45 NF-E2, and c-myb activities may be involved in PHSC maintenance or proliferation.
Resumo:
In a study towards elucidating the role of aromatases during puberty in female grey mullet, the cDNAs of the brain (muCyp19b) and ovarian (muCyp19a) aromatase were isolated by RT-PCR and their relative expression levels were determined by quantitative real-time RT-PCR. The muCyp19a ORF of 1515 bp encoded 505 predicted amino acid residues, while that of muCyp19b was 1485 bp and encoded 495 predicted amino acid residues. The expression level of muCyp19b significantly increased in the brain as puberty advanced; however, its expression level in the pituitary increased only slightly with pubertal development. In the ovary, the muCyp19a expression level markedly increased as puberty progressed. The promoter regions of the two genes were also isolated and their functionality evaluated in vitro using luciferase as the reporter gene. The muCyp19a promoter sequence (650 bp) contained a consensus TATA box and putative transcription factor binding sites, including two half EREs, an SF-1, an AhR/Arnt, a PR and two GATA-3s. The muCyp19b promoter sequence (2500 bp) showed consensus TATA and CCAAT boxes and putative transcription binding sites, namely: a PR, an ERE, a half ERE, a SP-1, two GATA-binding factor, one half GATA-1, two C/EBPs, a GRE, a NFkappaB, three STATs, a PPAR/RXR, an Ahr/Arnt and a CRE. Basal activity of serially deleted promoter constructs transiently transfected into COS-7, [alpha]T3 and TE671 cells demonstrated the enhancing and silencing roles of the putative transcription factor binding sites. Quinpirole, a dopamine agonist, significantly reduced the promoter activity of muCyp19b in TE671. The results suggest tissue-specific regulation of the muCyp19 genes and a putative alternative promoter for muCyp19b.
Resumo:
More than ten bradykinin-related peptides and their cDNAs; have been identified from amphibians, but their genes are unknown. In present study, four cDNAs encoding one, two, four and six copies of bradykinin-related peptides were cloned from the frog (Odorrana grahami) skin cDNA library, respectively. Three bradykinin-related peptides (bradykinin, Thr6-bradykinin, Leu5Thr6-bradykinin) were deduced from these four cDNA sequences. Based on the cDNA sequence, the gene sequence encoding an amphibian bradykinin-related peptide from O. grahami was determined. It is composed of 7481 base pairs including two exons and two introns. The first exon codes signal peptide and the second exon codes acidic spacer peptide and Thr6-bradykinin. The promoter region of the bradykinin gene contains several putative recognition sites for nuclear factors, such as SRY, GATA-1, LYF-1, DeltaE, CDXA, NKX-2.5, MIF1 and S8. The current work may facilitate to understand the regulation and possible functions of amphibian skin bradykinin-related peptides. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
SIMP (source of immunodominant MHC-associated peptides) plays a key rote in N-linked glycosylation with the active site of oligosaccharyltransferase, being the source of MHC-peptides in the MHC I presentation pathway. In the present study, the SIMP gene has been cloned from grass carp Ctenopharyngodon idella by rapid amplification of cDNA ends (RACE). The full length of the cDNA sequence is 4384 bp, including a 1117 bp 5' UTR (untranslated region), a 2418 bp open reading frame, and a 849 bp 3' UTR. The deduced amino acids of the grass carp SIMP (gcSIMP) are a highly conserved protein with a STT3 domain and 11 transmembrane regions. The gcSIMP spans over more than 24,212 bp in length, containing 16 exons and 15 introns. Most encoding exons, except the first and the 15th, have the same length as those in human and mouse. The gcSIMP promoter contains many putative transcription factor binding sites, such as Oct-1, GCN4, YY1, Sp1, Palpha, TBP, GATA-1, C/EBP beta, and five C/EBP alpha binding sites. The mRNA expression of gcSIMP in different organs was examined by real-time PCR. The gcSIMP was distributed in all the organs examined, with the highest level in brain, followed by the level in the heart, liver, gill, trunk kidney, muscle, head kidney, thymus, and the lowest level in spleen. Furthermore, the recombinant gcSIMP has been constructed successfully and expressed in Escherichia coli by using pQE-40 vector, and the polyclonal antibody for rabbit has been successfully obtained, which was verified to be specific. Identification of gcSIMP will help to explore the function in fish innate immunity. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The cDNAs and genes of two different types of leucine- rich repeat-containing proteins from grass carp ( Ctenopharyngodon idellus) were cloned. Homology search revealed that the two genes, designated as GC-GARP and GC-LRG, have 37% and 32% deduced aminoacid sequence similarities with human glycoprotein A repetitions predominant precursor ( GARP) and leucine-rich alpha2-glycoprotein (LRG), respectively. The cDNAs of GC-GARP and GC-LRG encoded 664 and 339 amino acid residues, respectively. GC-GARP and GC-LRG contain many distinct structural and/or functional motifs of the leucine- rich repeat (LRR) subfamily, such as multiple conserved 11-residue segments with the consensus sequence LxxLxLxxN/CxL ( x can be any amino acid). The genes GC-GARP and GC-LRG consist of two exons, with 4,782 bp and 2,119 bp in total length, respectively. The first exon of each gene contains a small 5'-untranslated region and partial open reading frame. The putative promoter region of GC-GARP was found to contain transcription factor binding sites for GATA-1, IRF4, Oct-1, IRF-7, IRF-1, AP1, GATA-box and NFAT, and the promoter region of GC-LRG for MYC-MAX, MEIS1, ISRE, IK3, HOXA9 and C/EBP alpha. Phylogenetic analysis showed that GC-GARP and mammalian GARPs were clustered into one branch, while GC-LRG and mammalian LRGs were in another branch. The GC-GARP gene was only detected in head kidney, and GC-LRG in the liver, spleen and heart in the copepod ( Sinergasilus major)- infected grass carp, indicating the induction of gene expression by the parasite infection. The results obtained in the present study provide insight into the structure of fish LRR genes, and further study should be carried out to understand the importance of LRR proteins in host - pathogen interactions.
Resumo:
海湾扇贝Argopecten irradian Lamarck于1982年从美国引种到中国,由于具有较快的生长速度和很高的经济效益,海湾扇贝成为中国最主要的养殖贝类之一。近年来海湾扇贝养殖遇到了死亡率高等问题,深入开展海湾扇贝功能基因的研究,尤其是免疫相关基因及其机制研究并在此基础上寻找扇贝疾病防治的有效方法对海湾扇贝的健康养殖十分重要。 对于贝类免疫系统来说,其血细胞在先天性免疫防御中起着重要的作用。当受到外界病原侵染时,贝类血细胞的一个重要免疫反应就是吞噬作用。在吞噬病原过程中,受到病原侵染的贝类还会产生其他多种免疫反应,这些免疫反应将消耗大量的能量(ATP),产能的呼吸链会加速运转,由此也会引发与呼吸链相耦联的活性氧(ROS)的大量产生。这些活性氧具有极强的反应特性,能破坏病原微生物的结构和功能分子,实现对入侵病原的杀灭。利用活性氧对被吞噬的病原进行杀灭,这是吞噬作用消除病原抵御侵染的重要机制。但由于活性氧分子反应的非特异性,它们也会破坏宿主机体细胞内的功能蛋白分子、不饱和脂肪酸分子和核酸等,对细胞造成严重的伤害,进而导致机体生理机能的损伤和免疫系统的破坏。所以,及时消除病原感染机体内过量产生的ROS,维持相关细胞的正常代谢,对提高机体抵抗力和免疫力具有重要的作用。O2-是生物体内产生的第一种活性氧分子,其他的活性氧分子也是由它衍生而来,消除过量O2-是消除过量活性氧危害的第一步也是关键一步。生物体内,超氧化物歧化酶(SOD)是催化O2-发生歧化反应,消除O2-的关键酶。 首先,本文通过RACE方法获得了海湾扇贝SOD家族全部三种基因的cDNA全长并对其进行了序列的生物信息学分析,海湾扇贝AiCuZnSOD全长cDNA为1047个碱基,其中开放阅读框为459个碱基,编码152个氨基酸,与栉孔扇贝Chlamys farreri的CuZnSOD相似度为77.5%,与长牡蛎Crassostrea gigas的相似度为75%,与人的相似度为74.7%。AiMnSOD全长cDNA为1207个碱基,其中开放阅读框为678个碱基,编码226个氨基酸,序列比对结果发现AiMnSOD的氨基酸序列与虾夷扇贝Mizuhopecten yessoensis和皱纹盘鲍Haliotis discus hannai的相似度分别为85%和78.4%,与哺乳动物相似度也在68%~72%之间。AiECSOD全长cDNA为893个碱基,其中开放阅读框为657个碱基,编码218个氨基酸。AiECSOD与其它物种ECSOD相似度比较低。与线虫Brugia pahangi的相似度为27.9%,与疟蚊Anopheles gambiae的相似度为31.4%,与斑马鱼Danio rerio的相似度为27.8%,与人的相似度也只有28.6%,与同是贝类的长牡蛎ECSOD也只有28.1%的相似性。主要原因是AiECSOD的信号肽和肝磷脂结合区域在各物种中无同源性。 其次,采用qRT-PCR(quantitative real time PCR)方法分析三种SOD基因在不同组织中的表达情况,结果表明三种SOD基因的组织表达有所差异。AiCuZnSOD基因在鳃中表达水平最高,其次是血细胞和性腺,在外套膜、闭壳肌和肝胰脏表达水平较低。AiMnSOD基因在鳃中表达水平最高,其次是外套膜,在血细胞、性腺,而在肝胰脏和闭壳肌表达较弱。AiECSOD基因在血细胞中表达水平最高,其次是肝胰脏,在鳃、闭壳肌表达水平较低,而性腺和外套膜没有检测到。同时,采用qRT-PCR对鳗弧菌Vibrio angullarum感染后海湾扇贝血细胞中三种SOD基因mRNA表达变化进行了检测。AiCuZnSOD表达量在各个时间段没有显著差异(P > 0.05)。AiMnSOD的表达量在1.5 h时略有下降,在3 h时达到最高表达量,是空白组(0h)的3倍(P < 0.01),从6 h到24 h表达量逐渐下降,24 h时表达量是空白组的1.6倍,24 h到48 h又稍有升高。AiECSOD的表达量在1.5 h时有所下降,是空白组的0.3倍(P < 0.05),随后逐渐升高,在12 h时达到最高表达量,是空白组(0h)的4.5倍(P < 0.01),从24 h到48 h表达量逐渐下降并恢复到空白组的水平。在对照组,各个时间点没有显著差异(P > 0.05)。在鳗弧菌感染后,海湾扇贝三种SOD的表达并不一致,且差异比较显著。AiCuZnSOD被认为是构成性表达基因,其受外界刺激的影响最小,AiMnSOD和AiECSOD受刺激后表达上调比较明显。 第三,采用Genome-walking的方法得到了海湾扇贝三种SOD基因的基因组全长和近端启动子序列并对其进行了相关分析。AiCuZnSOD的基因组序列全长为4279bp,包含有4个外显子和3个内含子。AiMnSOD的基因组序列全长为10692bp,包含有4个外显子和3个内含子。AiECSOD的基因组序列全长为5276bp,包含有5个外显子和4个内含子。三种基因外显子和内含子的结合处序列遵循-AT/GT-原则。我们把海湾扇贝SOD家族的三个基因的近端启动子进行了比较分析。发现三种SOD在靠近起始密码子的位置都有Oct-1结合位点。三种SOD共有的转录位点有:Oct-1、C/EBPalp、Oct2.1、Sp-1和GATA-1。AiCuZnSOD和AiMnSOD共有的转录位点有:ICSBP、Ftz、TATA-box、C/EBPbeta和Antp。AiCuZnSOD和AiECSOD共有的转录位点有:AP-1和NFκB。AiMnSOD和AiECSOD共有的转录位点有:GR和ER。AiCuZnSOD独有的位点有:SRF、YY-1和NF-1。AiMnSOD独有的位点有:HNF-1、Hb、MEB、NF-muE1、Pit-1a和Eve。AiECSOD独有的位点有:CREB、RATA-alph、Kruppel-like和AP-3。 此外,通过构建原核表达载体,本研究对AiCuZnSOD和AiECSOD基因进行了体外重组表达,并对纯化的重组蛋白进行了酶活分析。酶活分析表明,重组AiCuZnSOD蛋白有较高的酶活和稳定性。 最后,我们对海湾扇贝三种SOD基因的部分区域,包括启动子、编码区,部分内含子区域进行了SNP检测,并对SOD基因部分SNP位点多态性和鳗弧菌敏感性进行了相关分析。三种SOD基因中,我们共发现了59个SNP位点,其中AiECSOD的SNP位点最多,特别是在启动子区,AiCuZnSOD和AiMnSOD多态性较低。其中AiCuZnSOD启动子区的-1739 T-C 位点的基因型和等位基因,AiECSOD启动子区的-498 A-T和-267 G-A等位基因频率,AiECSOD的第一个外显子38 Thr-Lys的多态性在敏感和抗菌群体中存在显著差异(P < 0.05)。
Resumo:
Extracellular superoxide dismutase (ECSOD) is a major extracellular antioxidant enzyme that protects organs from damage by reactive oxygen species (ROS). We cloned a novel ECSOD from the bay scallop Argopecten irradians (AiECSOD) by 3' and 5' RACE. The full-length cDNA of AiECSOD was 893 bp with a 657 bp open reading frame encoding 218 amino acids. The deduced amino acid sequence contained a putative signal peptide of 20 amino acids, and sequence comparison showed that AiECSOD had low degree of homology to ECSODs of other organisms. The genomic length of the AiECSOD gene was about 5276 bp containing five exons and six introns. The promoter region contained many putative transcription factor binding sites such as c-Myb, Oct-1, Sp1, Kruppel-like, c-ETS, NF kappa B, GATA-1, AP-1, and Ubx binding sites. Furthermore, tissue-specific expressions of AiECSOD and temporal expressions of AiECSOD in haemocytes of bay scallops challenged with bacteria Vibrio anguillarum were quantified using qRT-PCR. High levels of expression were detected in haemocytes, but not in gonad and mantle. The expression of AiECSOD reached the highest level at 12 h post-injection with V. anguillarum and then returned to normal between 24 h and 48 h post-injection. These results indicated that AiECSOD was an inducible protein and that it may play an important role in the immune responses against V anguillarum. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.