994 resultados para GAP HETEROSTRUCTURES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate theoretically the spin states in InAs/AlSb/GaSb broken-gap quantum wells by solving the Kane model and the Poisson equation self-consistently. The spin states in InAs/AlSb/GaSb quantum wells are quite different from those obtained by the single-band Rashba model due to the electron-hole hybridization. The Rashba spin splitting of the lowest conduction subband shows an oscillating behavior. The D'yakonov-Perel' spin-relaxation time shows several peaks with increasing the Fermi wave vector. By inserting an AlSb barrier between the InAs and GaSb layers, the hybridization can be greatly reduced. Consequently, the spin orientation, the spin splitting, and the D'yakonov-Perel' spin-relaxation time can be tuned significantly by changing the thickness of the AlSb barrier.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is important to acquire the composition of Si1-xGex layer, especially that with high Ge content, epitaxied on Si substrate. Two nondestructive examination methods, double crystals X-ray diffraction (DCXRD) and micro-Raman measurement, were introduced comparatively to determine x value in Si1-xGex: layer, which show that while the two methods are consistent with each other when x is low, the results obtained from double crystals X-ray diffraction are not credible due to the large strain relaxation occurring in Si1-xGex layers when Ge content is higher than about 20%. Micro-Raman measurement is more appropriate for determining high Ge content than DCXRD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

GaP/Si is a promoting heterostructure for Si-based optoelectronic devices since lattice constants of GaP and Si are so closed that they can match with each other. GaP was successfully grow on (100) Si subtracts by Gas-Source Molecular Bean Epitaxy (GS-MBE) in the study. The GaP/Si heterostructure was characterized by X-ray double crystal diffraction, Anger electron spectrograph, X-ray photonic spectrograph and photoluminescence (PL) measurements. The results showed that the epitaxial GaP layers are single crystalline, in which a parallel to and a (perpendicular to)are 0.54322 and 0.54625 nm, respectively. The peaks in PL spectra of GaP epitaxial layer grown on Si are 650, 627 and 640 nm, respectively. The study demonstrated that GaP/Si is a kind of lattice matched heterostructures and will be a promoting materials for future integrated photonics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

InGaN epitaxial films were grown on GaN template by plasma-assisted molecular beam epitaxy. The composition of indium incorporation in single phase InGaN film was found to be 23%. The band gap energy of single phase InGaN was found to be similar to 2.48 eV: The current-voltage (I-V) characteristic of InGaN/GaN heterojunction was found to be rectifying behavior which shows the presence of Schottky barrier at the interface. Log-log plot of the I-V characteristics under forward bias indicates the current conduction mechanism is dominated by space charge limited current mechanism at higher applied voltage, which is usually caused due to the presence of trapping centers. The room temperature barrier height and the ideality factor of the Schottky junction were found to 0.76 eV and 4.9 respectively. The non-ideality of the Schottky junction may be due to the presence of high pit density and dislocation density in InGaN film. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MoTe2 with a narrow band-gap of similar to 1.1 eV is a promising candidate for optoelectronic applications, especially for the near-infrared photo detection. However, the photo responsivity of few layers MoTe2 is very small (<1mAW(-1)). In this work, we show that a few layer MoTe2-graphene vertical heterostructures have a much larger photo responsivity of similar to 20mAW(-1). The trans-conductance measurements with back gate voltage show on-off ratio of the vertical transistor to be similar to(0.5-1) x 10(5). The rectification nature of the source-drain current with the back gate voltage reveals the presence of a stronger Schottky barrier at the MoTe2-metal contact as compared to the MoTe2-graphene interface. In order to quantify the barrier height, it is essential to measure the work function of a few layers MoTe2, not known so far. We demonstrate a method to determine the work function by measuring the photo-response of the vertical transistor as a function of the Schottky barrier height at the MoTe2-graphene interface tuned by electrolytic top gating. (C) 2016 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The material presented in this thesis concerns the growth and characterization of III-V semiconductor heterostructures. Studies of the interactions between bound states in coupled quantum wells and between well and barrier bound states in AlAs/GaAs heterostructures are presented. We also demonstrate the broad array of novel tunnel structures realizable in the InAs/GaSb/AlSb material system. Because of the unique broken-gap band alignment of InAs/GaSb these structures involve transport between the conduction- and valence-bands of adjacent layers. These devices possess a wide range of electrical properties and are fundamentally different from conventional AlAs/GaAs tunnel devices. We report on the fabrication of a novel tunnel transistor with the largest reported room temperature current gains. We also present time-resolved studies of the growth fronts of InAs/GainSb strained layer superlattices and investigations of surface anion exchange reactions.

Chapter 2 covers tunneling studies of conventional AlAs/GaAs RTD's. The results of two studies are presented: (i) A test of coherent vs. sequential tunneling in triple barrier heterostructures, (ii) An optical measurement of the effect of barrier X-point states on Γ-point well states. In the first it was found if two quantum wells are separated by a sufficiently thin barrier, then the eigenstates of the system extend coherently across both wells and the central barriers. For thicker barriers between the wells, the electrons become localized in the individual wells and transport is best described by the electrons hopping between the wells. In the second, it was found that Γ-point well states and X-point barrier states interact strongly. The barrier X-point states modify the energies of the well states and increase the escape rate for carriers in the quantum well.

The results of several experimental studies of a novel class of tunnel devices realized in the InAs/GaSb/AlSb material system are presented in Chapter 3. These interband tunnel structures involve transport between conduction- and valence-band states in adjacent material layers. These devices are compared and contrasted with the conventional AlAs/GaAs structures discussed in Chapter 2 and experimental results are presented for both resonant and nonresonant devices. These results are compared with theoretical simulations and necessary extensions to the theoretical models are discussed.

In chapter 4 experimental results from a novel tunnel transistor are reported. The measured current gains in this transistor exceed 100 at room temperature. This is the highest reported gain at room temperature for any tunnel transistor. The device is analyzed and the current conduction and gain mechanisms are discussed.

Chapters 5 and 6 are studies of the growth of structures involving layers with different anions. Chapter 5 covers the growth of InAs/GainSb superlattices for far infrared detectors and time resolved, in-situ studies of their growth fronts. It was found that the bandgap of superlattices with identical layer thicknesses and compositions varied by as much as 40 meV depending on how their internal interfaces are formed. The absorption lengths in superlattices with identical bandgaps but whose interfaces were formed in different ways varied by as much as a factor of two. First the superlattice is discussed including an explanation of the device and the complications involved in its growth. The experimental technique of reflection high energy electron diffraction (RHEED) is reviewed, and the results of RHEED studies of the growth of these complicated structures are presented. The development of a time resolved, in-situ characterization of the internal interfaces of these superlattices is described. Chapter 6 describes the result of a detailed study of some of the phenomena described in chapter 5. X-ray photoelectron spectroscopy (XPS) studies of anion exchange reactions on the growth fronts of these superlattices are reported. Concurrent RHEED studies of the same physical systems studied with XPS are presented. Using the RHEED and XPS results, a real-time, indirect measurement of surface exchange reactions was developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theoretical electron mobility limited by dislocation scattering of a two-dimensional electron gas confined near the interface of AlxGa1-xN/GaN heterostructures was calculated. Based on the model of treating dislocation as a charged line, an exponentially varied potential was adopted to calculate the mobility. The estimated mobility suggests that such a choice can simplify the calculation without introducing significant deviation from experimental data, and we obtained a good fitting between the calculated and experimental results. It was found that the measured mobility is dominated by interface roughness and dislocation scattering at low temperatures if dislocation density is relatively high (>10(9) cm(-2)), and accounts for the nearly flattening-out behavior with increasing temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical properties of two kinds of InGaN/GaN quantum-wells light emitting diodes, one of which was doped with Si in barriers while the other was not, are comparatively investigated using time-integrated photoluminescence and time-resolved photoluminescence techniques. The results clearly demonstrate the coexistence of the band gap renormalization and phase-space filling effect in the structures with Si doped barriers. It is surprisingly found that photogenerated carriers in the intentionally undoped structures decay nonexponentially, whereas carriers in the Si doped ones exhibit a well exponential time evolution. A new model developed by O. Rubel, S. D. Baranovskii, K. Hantke, J. D. Heber, J. Koch, P. Thomas, J. M. Marshall, W. Stolz, and W. H. Ruhle [J. Optoelectron. Adv. Mater. 7, 115 (2005)] was used to simulate the decay curves of the photogenerated carriers in both structures, which enables us to determine the localization length of the photogenerated carriers in the structures. It is found that the Si doping in the barriers not only leads to remarkable many-body effects but also significantly affects the carrier recombination dynamics in InGaN/GaN layered heterostructures. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present ab-initio calculations of seven digital magnetic heterostructures, GaN delta-doped with V, Cr, Mn, Fe, Co, Ni, and Cu, forming two-dimensional systems. Only GaN delta-doped with V or Cr present a ferromagnetic ground state with high Curie temperatures. For both, to better describe the electronic properties, we used the GGA-1/2 approach. The ground state of GaN/Cr resulted in a two dimensional half-metal, with 100% spin polarization. For GaN/V, we obtained an insulating state: integer magnetic moment of 2.0 mu(B), a minority spin gap of 3.0 eV close to the gap of GaN, but a majority spin gap of 0.34 eV. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4751285]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

III-nitride materials are very promising for high speed electronics/optical applications but still suffer in performance due to problems during high quality epitaxial growth, evolution of dislocation and defects, less understanding of fundamental physics of materials/processing of devices etc. This thesis mainly focus on GaN based heterostructures to understand the metal-semiconductor interface properties, 2DE(H)G influence on electrical and optical properties, and deep level states in GaN and InAlN, InGaN materials. The detailed electrical characterizations have been employed on Schottky diodes at GaN and InAl(Ga)N/GaN heterostructures in order to understand the metal-semiconductor interface related properties in these materials. I have observed the occurrence of Schottky barrier inhomogenity, role of dislocations in terms of leakage and creating electrically active defect states within energy gap of materials. Deep level transient spectroscopy method is employed on GaN, InAlN and InGaN materials and several defect levels have been observed related to majority and minority carriers. In fact, some defects have been found common in characteristics in ternary layers and GaN layer which indicates that those defect levels are from similar origin, most probably due to Ga/N vacancy in GaN/heterostructures. The role of structural defects, roughness has been extensively understood in terms of enhancing the reverse leakage current, suppressing the mobility in InAlN/AlN/GaN based high electron mobility transistor (HEMT) structures which are identified as key issues for GaN technology. Optical spectroscopy methods have been employed to understand materials quality, sub band and defect related transitions and compared with electrical characterizations. The observation of 2DEG sub band related absorption/emission in optical spectra have been identified and proposed for first time in nitride based polar heterostructures, which is well supported with simulation results. In addition, metal-semiconductor-metal (MSM)-InAl(Ga)N/GaN based photodetector structures have been fabricated and proposed for achieving high efficient optoelectronics devices in future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Room temperature electroreflectance (ER) spectroscopy has been used to study the fundamental properties of AlxInyGa${}_{1-x-y}$N/AlN/GaN heterostructures under different applied bias. The (0001)-oriented heterostructures were grown by metal-organic vapor phase epitaxy on sapphire. The band gap energy of the AlxInyGa${}_{1-x-y}{\rm{N}}$ layers has been determined from analysis of the ER spectra using Aspnes' model. The obtained values are in good agreement with a nonlinear band gap interpolation equation proposed earlier. Bias-dependent ER allows one to determine the sheet carrier density of the two-dimensional electron gas and the barrier field strength.