8 resultados para GAMNN
Resumo:
The magnetic characteristics of Ga1-xMnxN nanocrystalline films (x = 0.08 and x = 0.18), grown by reactive sputtering onto amorphous silica substrates (a-SiO2), are shown. Further than the dominant paramagnetic-like behaviour, both field- and temperature-dependent magnetization curves presented some particular features indicating the presence of secondary magnetic phases. A simple and qualitative analysis based on the Brillouin function assisted the interpretation of these secondary magnetic contributions, which were tentatively attributed to antiferromagnetic and ferromagnetic phases. © 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The diluted magnetic semiconductors are promising materials for spintronic applications. Usually one intents to find the ferromagnetic state but recently the antiferromagnetism (AFM) was proposed to have some advantages. In this work, we verify the possibility to obtain spin polarization with an AFM state. In particular, we studied GaN 5% double doped with two different transition metals atoms (Mn and Co or Cr and Ni), forming the Mn(x)Co(0.056-x)Ga(0.944)N and Cr(x)Ni(0.056-x)Ga(0.944)N quaternary alloys. In order to simulate these systems in a more realistic way, and take into account composition fluctuations, we adapted the generalized quasichemical approach to diluted alloys, which is used in combination with spin density-functional theory. We find that is possible to obtain an AFM ground state up to 70% spin polarization.
Resumo:
A computational method to simulate the changes in the electronic structure of Ga1-xMn xN was performed in order to improve the understanding of the indirect contribution of Mn atoms. This periodic quantum-mechanical method is based on density functional theory at B3LYP level. The electronic structures are compared with experimental data of the absorption edge of the GaMnN. It was observed that the indirect influence of Mn through the structural parameters can account for the main part of the band gap variation for materials in the diluted regime (x<0.08), and is still significant for higher compositions (x~0.18).
Resumo:
We have focused on the optical absorption edge of nanocrystalline Ga(1-x)Mn(x)N (0.00 <= x <= 0.18) films deposited by reactive RF magnetron sputtering. The films obtained are nanocrystalline with grain sizes of about 25 nm, having wurtzite structure and strong orientation texture in the c-axis direction. The optical characterizations of the absorption edges were obtained in the 190-2600 nm spectral range. The increase of the Mn content causes an increase of the absorption coefficient which can be clearly noticed at low energies, and a quasi-linear decrease of the optical gap. Broad absorption bands observed around similar to 1.3 and similar to 2.2 eV were associated with transitions between the Mn acceptor level and the valence and conduction bands, respectively. The observed changes in the optical properties due to the Mn incorporation observed in these nanocrystalline films are similar to those reported for ferromagnetic GaMnN single-crystal films.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The growth of nanocrystalline Ga1-zMnxN (0.00 <= x <= 0.18) films grown by reactive RF-magnetron sputtering is focused here for the first time. The films were grown in a N-2 atmosphere by co-sputtering technique using a Ga target covered with small pieces of Mn onto c-GaAs (10 0), c-Si (10 0) and amorphous SiO2 substrates maintained at 500 K. Scanning electron microscopy and X-ray diffraction (XRD) experiments did not show any evidence for Mn segregation within the studied composition range. EDX measurements show that the Mn concentration is increased monotonically with the fraction of the target area covered by Mn. The XRD characterization show that the films are nanocrystalline, the crystallites having mean grain sizes in the 15-19 nm range and wurtzite structure with preferential growth orientation along the c-axis direction. The lattice parameters of alpha-GaN (a and c) increase practically linearly with the increase of Mn incorporation. The changes in the structural properties of our films due to the Mn incorporation are similar to those that occur in ferromagnetic GaMnN single-crystal films. (c) 2006 Elsevier B.V. All rights reserved.