924 resultados para Fuzzy classification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuzzy classification, semi-supervised learning, data mining

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial analysis and fuzzy classification techniques were used to estimate the spatial distributions of heavy metals in soil. The work was applied to soils in a coastal region that is characterized by intense urban occupation and large numbers of different industries. Concentrations of heavy metals were determined using geostatistical techniques and classes of risk were defined using fuzzy classification. The resulting prediction mappings identify the locations of high concentrations of Pb, Zn, Ni, and Cu in topsoils of the study area. The maps show that areas of high pollution of Ni and Cu are located at the northeast, where there is a predominance of industrial and agricultural activities; Pb and Zn also occur in high concentrations in the northeast, but the maps also show significant concentrations of Pb and Zn in other areas, mainly in the central and southeastern parts, where there are urban leisure activities and trade centers. Maps were also prepared showing levels of pollution risk. These maps show that (1) Cu presents a large pollution risk in the north-northwest, midwest, and southeast sectors, (2) Pb represents a moderate risk in most areas, (3) Zn generally exhibits low risk, and (4) Ni represents either low risk or no risk in the studied area. This study shows that combining geostatistics with fuzzy theory can provide results that offer insight into risk assessment for environmental pollution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper uses folksonomies and fuzzy clustering algorithms to establish term-relevant related results. This paper will propose a Meta search engine with the ability to search for vaguely associated terms and aggregate them into several meaningful cluster categories. The potential of the fuzzy weblog extraction is illustrated using a simple example and added value and possible future studies are discussed in the conclusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the paper a fuzzy sets implementation into web sites classification is considered. Web sites external features are addressed and the possibility to use them for the classification is proved. An example with five different categories classification is given.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditional methods do not actually measure peoples’ risk attitude naturally and precisely. Therefore, a fuzzy risk attitude classification method is developed. Since the prospect theory is usually considered as an effective model of decision making, the personalized parameters in prospect theory are firstly fuzzified to distinguish people with different risk attitudes, and then a fuzzy classification database schema is applied to calculate the exact value of risk value attitude and risk be- havior attitude. Finally, by applying a two-hierarchical clas- sification model, the precise value of synthetical risk attitude can be acquired.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Landscape classification tackles issues related to the representation and analysis of continuous and variable ecological data. In this study, a methodology is created in order to define topo-climatic landscapes (TCL) in the north-west of Catalonia (north-east of the Iberian Peninsula). TCLs relate the ecological behaviour of a landscape in terms of topography, physiognomy and climate, which compound the main drivers of an ecosystem. Selected variables are derived from different sources such as remote sensing and climatic atlas. The proposed methodology combines unsupervised interative cluster classification with a supervised fuzzy classification. As a result, 28 TCLs have been found for the study area which may be differentiated in terms of vegetation physiognomy and vegetation altitudinal range type. Furthermore a hierarchy among TCLs is set, enabling the merging of clusters and allowing for changes of scale. Through the topo-climatic landscape map, managers may identify patches with similar environmental conditions and asses at the same time the uncertainty involved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Land cover mappings represent important tools for the regional planning. However, the current mappings are related to very specific purposes and, consequently, they are limited in their capacity to define the wide variety of existing types of land cover. In that context, this paper aims at developing a wide and including hierarchical classification system for land cover mapping in regional scale, which should contribute for a future standardization of classes. Besides, it is intended to test that system for a study case that contemplates the use of a classification method based on fuzzy approach, which has shown to be more appropriate than conventional approaches. Therefore, it was proposed a hierarchical classification system with three detailing levels and a study case was defined with the specification of the test area and of the classification project. Then, the georreferencing of a TM/Landsat-5 image that comprises the test area was carried out. Later, it was applied a fuzzy classification approach in the TM/Landsat-5 image, starting from images of probability for the mapped classes and an uncertainty image were generated. Finally, it was produced a conventional output that represents the thematic mapping of the test area.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this study was to analyze, using the geoestatistic and a system of classification fuzzy, the fertility of an experimental area with base in chemical attributes of the soil and its relationship with the productivity of the conilon coffee. The study was accomplished in the experimental farm of the INCAPER - ES. The soil samples were collected in the depth of 0 - 0.2 m, being analyzed the attributes: matches, potassium, calcium and magnesium, aluminum, sum of bases, cation exchange capacity (pH 7), and saturation percentage. The data were submitted to a descriptive, exploratory, and geostatistical analysis. A system of fuzzy classification was applied using the attributes described to infer about the fertility of the soil and its relationship with the productivity of the culture. The fertility possibility presented positive spatial relationship with the productivity of the culture, with higher values of this where the possibility of fertile soil is superior.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposes a fuzzy classification system for the risk of infestation by weeds in agricultural zones considering the variability of weeds. The inputs of the system are features of the infestation extracted from estimated maps by kriging for the weed seed production and weed coverage, and from the competitiveness, inferred from narrow and broad-leaved weeds. Furthermore, a Bayesian network classifier is used to extract rules from data which are compared to the fuzzy rule set obtained on the base of specialist knowledge. Results for the risk inference in a maize crop field are presented and evaluated by the estimated yield loss. © 2009 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this Thesis is to develop a robust and powerful method to classify galaxies from large surveys, in order to establish and confirm the connections between the principal observational parameters of the galaxies (spectral features, colours, morphological indices), and help unveil the evolution of these parameters from $z \sim 1$ to the local Universe. Within the framework of zCOSMOS-bright survey, and making use of its large database of objects ($\sim 10\,000$ galaxies in the redshift range $0 < z \lesssim 1.2$) and its great reliability in redshift and spectral properties determinations, first we adopt and extend the \emph{classification cube method}, as developed by Mignoli et al. (2009), to exploit the bimodal properties of galaxies (spectral, photometric and morphologic) separately, and then combining together these three subclassifications. We use this classification method as a test for a newly devised statistical classification, based on Principal Component Analysis and Unsupervised Fuzzy Partition clustering method (PCA+UFP), which is able to define the galaxy population exploiting their natural global bimodality, considering simultaneously up to 8 different properties. The PCA+UFP analysis is a very powerful and robust tool to probe the nature and the evolution of galaxies in a survey. It allows to define with less uncertainties the classification of galaxies, adding the flexibility to be adapted to different parameters: being a fuzzy classification it avoids the problems due to a hard classification, such as the classification cube presented in the first part of the article. The PCA+UFP method can be easily applied to different datasets: it does not rely on the nature of the data and for this reason it can be successfully employed with others observables (magnitudes, colours) or derived properties (masses, luminosities, SFRs, etc.). The agreement between the two classification cluster definitions is very high. ``Early'' and ``late'' type galaxies are well defined by the spectral, photometric and morphological properties, both considering them in a separate way and then combining the classifications (classification cube) and treating them as a whole (PCA+UFP cluster analysis). Differences arise in the definition of outliers: the classification cube is much more sensitive to single measurement errors or misclassifications in one property than the PCA+UFP cluster analysis, in which errors are ``averaged out'' during the process. This method allowed us to behold the \emph{downsizing} effect taking place in the PC spaces: the migration between the blue cloud towards the red clump happens at higher redshifts for galaxies of larger mass. The determination of $M_{\mathrm{cross}}$ the transition mass is in significant agreement with others values in literature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Traditionally, ontologies describe knowledge representation in a denotational, formalized, and deductive way. In addition, in this paper, we propose a semiotic, inductive, and approximate approach to ontology creation. We define a conceptual framework, a semantics extraction algorithm, and a first proof of concept applying the algorithm to a small set of Wikipedia documents. Intended as an extension to the prevailing top-down ontologies, we introduce an inductive fuzzy grassroots ontology, which organizes itself organically from existing natural language Web content. Using inductive and approximate reasoning to reflect the natural way in which knowledge is processed, the ontology’s bottom-up build process creates emergent semantics learned from the Web. By this means, the ontology acts as a hub for computing with words described in natural language. For Web users, the structural semantics are visualized as inductive fuzzy cognitive maps, allowing an initial form of intelligence amplification. Eventually, we present an implementation of our inductive fuzzy grassroots ontology Thus,this paper contributes an algorithm for the extraction of fuzzy grassroots ontologies from Web data by inductive fuzzy classification.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Descriptions of vegetation communities are often based on vague semantic terms describing species presence and dominance. For this reason, some researchers advocate the use of fuzzy sets in the statistical classification of plant species data into communities. In this study, spatially referenced vegetation abundance values collected from Greek phrygana were analysed by ordination (DECORANA), and classified on the resulting axes using fuzzy c-means to yield a point data-set representing local memberships in characteristic plant communities. The fuzzy clusters matched vegetation communities noted in the field, which tended to grade into one another, rather than occupying discrete patches. The fuzzy set representation of the community exploited the strengths of detrended correspondence analysis while retaining richer information than a TWINSPAN classification of the same data. Thus, in the absence of phytosociological benchmarks, meaningful and manageable habitat information could be derived from complex, multivariate species data. We also analysed the influence of the reliability of different surveyors' field observations by multiple sampling at a selected sample location. We show that the impact of surveyor error was more severe in the Boolean than the fuzzy classification. © 2007 Springer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)