875 resultados para Fringe pattern traces
Resumo:
本文提出了一种自动辨识条纹顺序的方法。它使用简化的Otsu算法获得阈值,然后在45°的范围内对干涉条纹的位置进行搜索,最后由区域搜索技术辨识不同的条纹。实验结果表明,本方法能可靠地获得近似45°到90°的干涉条纹顺序。
Resumo:
Wavelet transform analysis of projected fringe pattern for phase recovery in 3-D shape measurement of objects is investigated. The present communication specifically outlines and evaluates the errors that creep in to the reconstructed profiles when fringe images do not satisfy periodicity. Three specific cases that give raise to non-periodicity of fringe image are simulated and leakage effects caused by each one of them are analyzed with continuous complex Morlet wavelet transform. Same images are analyzed with FFT method to make a comparison of the reconstructed profiles with both methods. Simulation results revealed a significant advantage of wavelet transform profilometry (WTP), that the distortions that arise due to leakage are confined to the locations of discontinuity and do not spread out over the entire projection as in the case of Fourier transform profilometry (FTP).
Resumo:
In this paper, a nano-moiré fringe multiplication method is proposed, which can be used to measure nano-deformation of single crystal materials. The lattice structure of Si (111) is recorded on a film at a given magnification under a transmission microscope, which acts as a specimen grating. A parallel grating (binary type) on glass or film is selected as a reference grating. A multiplied nano-moiré fringe pattern can be reproduced in a 4f optical filter system with the specimen grating and the prepared reference grating. The successful results illustrate that this method can be used to measure deformation in nanometre scale. The method is especially useful in the measurement of the inhomogeneous displacement field, and can be utilized to characterize nano-mechanical behaviour of materials such as dislocation and atomic bond failure.
Resumo:
Profilometry by electronic speckle pattern interferometry with multimode diode lasers is both theoretically and experimentally studied. The multiwavelength character of the laser emission provides speckled images covered with interference fringes corresponding to the surface relief in single-exposure processes. For fringe pattern evaluation, variations of the phase-stepping technique are investigated for phase mapping as a function of the number of laser modes. Expressions for two, three, and four modes in four and eight stepping are presented, and the performances of those techniques are compared in the experiments through the surface shaping of a flat bar. The surface analysis of a peach points out the possibility of applying the technique in the quality control of food production and agricultural research. (c) 2007 Optical Society of America.
Resumo:
Crystallization behaviors of the glass with a composition of 25Li(2)O.25B(2)O(3).50GeO(2) corresponding to lithium borogermanate LiBGeO4 have been examined. It has been confirmed that the LiBGeO4 crystalline phase is formed at the surface of heat-treated glasses. The second harmonic (SH) generation is found from transparent surface crystallized glasses, demonstrating for the first time that the LiBGeO4 phase shows optical nonlinearity. The SH intensity of LiBGeO4 crystallites (powdered state) prepared through crystallization is about ten times as large as that of pulverized alpha-quartz. The SH intensity of transparent crystallized glasses (bulk state) with crystalline layers of 3-4.5 mum thickness increases with increasing heat treatment temperature (540-560degreesC) and time (1-6 h), and the maximum SH intensity among the samples studied is in the order of 1/10 in comparison with that of alpha-quartz single crystal. The transparent crystallized glass obtained by heat treatment at 550alphaC for 3 h exhibits a clear and fine Maker fringe pattern, indicating a highly orientation of LiBGeO4 crystals at the surface.
Resumo:
The variation in temperature and concentration plays a crucial role in predicting the final microstructure during solidification of a binary alloy. Most of the experimental techniques used to measure concentration and temperature are intrusive in nature and affect the flow field. In this paper, the main focus is laid on in-situ, non-intrusive, transient measurement of concentration and temperature during the solidification of a binary mixture of aqueous ammonium chloride solution (a metal-analog system) in a top cooled cavity using laser based Mach-Zehnder Interferometric technique. It was found from the interferogram, that the angular deviation of fringe pattern and the total number of fringes exhibit significant sensitivity to refractive index and hence are functions of the local temperature and concentration of the NH4Cl solution inside the cavity. Using the fringe characteristics, calibration curves were established for the range of temperature and concentration levels expected during the solidification process. In the actual solidification experiment, two hypoeutectic solutions (5% and 15% NH4Cl) were chosen. The calibration curves were used to determine the temperature and concentration of the solution inside the cavity during solidification of 5% and 15% NH4Cl solution at different instants of time. The measurement was carried out at a fixed point in the cavity, and the concentration variation with time was recorded as the solid-liquid interface approached the measurement point. The measurement exhibited distinct zones of concentration distribution caused by solute rejection and Rayleigh Benard convection. Further studies involving flow visualization with laser scattering confirmed the Rayleigh Benard convection. Computational modeling was also performed, which corroborated the experimental findings. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Lamb wave type guided wave propagation in foam core sandwich structures and detectability of damages using spectral analysis method are reported in this paper. An experimental study supported by theoretical evaluation of the guided wave characteristics is presented here that shows the applicability of Lamb wave type guided ultrasonic wave for detection of damage in foam core sandwich structures. Sandwich beam specimens were fabricated with 10 mm thick foam core and 0.3 mm thick aluminum face sheets. Thin piezoelectric patch actuators and sensors are used to excite and sense guided wave. Group velocity dispersion curves and frequency response of sensed signal are obtained experimentally. The nature of damping present in the sandwich panel is monitored by measuring the sensor signal amplitude at various different distances measured from the center of the linear phased array. Delaminations of increasing width are created and detected experimentally by pitch-catch interrogation with guided waves and wavelet transform of the sensed signal. Signal amplitudes are analyzed for various different sizes of damages to differentiate the damage size/severity. A sandwich panel is also fabricated with a planer dimension of 600 mm x 400 mm. Release film delamination is introduced during fabrication. Non-contact Laser Doppler Vibrometer (LDV) is used to scan the panel while exciting with a surface bonded piezoelectric actuator. Presence of damage is confirmed by the reflected wave fringe pattern obtained from the LDV scan. With this approach it is possible to locate and monitor the damages by tracking the wave packets scattered from the damages.
Resumo:
The paper proposes a non-destructive method for simultaneous measurement of in-plane and out-of-plane displacements and strains undergone by a deformed specimen from a single moire fringe pattern obtained on the specimen in a dual beam digital holographic interferometry setup. The moire fringe pattern encodes multiple interference phases which carry the information on multidimensional deformation. The interference field is segmented in each column and is modeled as multicomponent quadratic/cubic frequency-modulated signal in each segment. Subsequently, the product form of modified cubic phase function is used for accurate estimation of phase parameters. The estimated phase parameters are further utilized for direct estimation of the unwrapped interference phases and phase derivatives. The simulation and experimental results are provided to validate the effectiveness of the proposed method.
Resumo:
An optical diagnostic system consisting of the Michelson interferometer with the image processor has been developed for the study of the kinetics of the thermal capillary convection. The capillary convection, surface deformation, surface wave and the velocity field in a rectangular cavity with different temperature's sidewalls have been investigated by optical interference method and PIV technique. In order to calculate the surface deformation from the interference fringe, Fourier transformation is used to grating analysis. The quantitative results of the surface deformation and surface wave have been calculated from the interference fringe pattern.
Resumo:
An optical diagnostic system consisting of Michelson interferometer with image processor has been developed for study of the kinetics of thermal capillary convection and buoyancy convection. This optical interferometer has been used to observe and measure surface deformation and surface wave of capillary convection and buoyancy convection in a rectangular cavity with different temperature’s sidewalls. Fourier transformation is used to image processing. The quantitative results of surface deformation and surface wave have been calculated from the interference fringe pattern. With the increasing of temperature gradient, the liquid surface slant gradually. It’s deformation has been calculated, which is related directly with temperature gradient. This is one of the characters introducing convection. Another interesting phenomenon is the inclining direction, which is different when the liquid layer is thin or thick. When the liquid layer is thin, convection is mainly controlled by thermocapillary effect. However, When the liquid layer is thick, convection is mainly controlled by buoyancy effect. Surface deformation in the present experiment are more and more declining in this process. The present experiment proved that surface deformation appears before the appearance of surface wave on fluid convection, it is related with temperature gradient, and the height of liquid layer, and lies on capillary convection and buoyancy convection. The present experiment also demonstrates that the amplitude of surface wave of thermocapillary-buoyancy convection is much smaller than surface deformation, the wave is covered by deformation.
Resumo:
We experimentally investigate the high-order harmonic generation in argon gas using a driving laser pulse at a center wavelength of 1240 nm. High-contrast fine interference fringes could be observed in the harmonic spectra near the propagation axis, which is attributed to the interference between long and short quantum paths. We also systematically examine the variation of the interference fringe pattern with increasing energy of the driving pulse and with different phase-matching conditions.
Resumo:
A novel phase-step calibration technique is presented on the basis of a two-run-times-two-frame phase-shift method. First the symmetry factor M is defined to describe the distribution property of the distorted phase due to phase-shifter miscalibration; then the phase-step calibration technique, in which two sets of two interferograms with a straight fringe pattern are recorded and the phase step is obtained by calculating M of the wrapped phase map, is developed. With this technique, a good mirror is required, but no uniform illumination is needed and no complex mathematical operation is involved. This technique can be carried out in situ and is applicable to any phase shifter, whether linear or nonlinear. (c) 2006 Optical Society of America.
Resumo:
We quantitatively study the domain inversion in a RuO2:LiNbO3 crystal wafer by the digital holographic interferometry. The crystal wafer is placed into one arm of a Mach-Zehnder-type interferometer to record a series of holograms. Making use of the angular spectrum backward propagation algorithm, we reconstruct the optical wave field in the crystal plane. The extracted phase difference from the reconstructed optical wave field is a well linear function of the applied external voltage. We deduce that the linear electro-optic coefficient of the detected RuO2:LiNbO3 crystal sample is 9.1x10(-12) m/V. An unexpected phase contrast at the antiparallel domain wall is observed and the influence of the applied external voltage on it is studied in detail. Also the built-in internal field is quantitatively measured as 0.72 kV/mm. (c) 2006 American Institute of Physics.
Resumo:
This paper describes a path-following phase unwrapping algorithm and a phase unwrapping algorithm based on discrete cosine transform (DCT) which accelerates the Computation and suppresses the propagation of noise. Through analysis of fringe pattern with serious noises simulated in mathematic model, we make a contrast between path-following algorithm and DCT algorithm. The advantages and disadvantages or analytical fringe pattern are also given through comparison of two algorithms. Three-dimensional experimental results have been given to prove the validity of these algorithms. Despite DCT phase unwrapping technique robustness and speed in some cases, it cannot be unwrapping inconsistencies phase. The path-following algorithm can be used in automation analysis of fringe patterns with little influence of noise. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
In this paper we present and demonstrate a technique that allows simultaneous and independent measurement of small changes in the refractive index and the absorption coefficient produced in photosensitive materials during holographic exposure. The technique is based on the synchronous detection of two-wave mixing signals in both directions of the transmitted interfering beams. By processing both signals it is possible to separate the diffraction contributions of the refractive index from the absorption coefficient and simultaneously stabilize the incident fringe pattern. The demonstration of this technique is undertaken by following the temporal evolution of the phase and amplitude modulations in photoresist films. To check the ability of the technique to perform numeric evaluations, for a positive photoresist the changes in the optical constants were measured and compared with those obtained using independent methods.