903 resultados para Frammentazione, Infrastrutture viarie, Corine Land Cover, Attraversamenti faunistici, GIS
Resumo:
Maps of continental-scale land cover are utilized by a range of diverse users but whilst a range of products exist that describe present and recent land cover in Europe, there are currently no datasets that describe past variations over long time-scales. User groups with an interest in past land cover include the climate modelling community, socio-ecological historians and earth system scientists. Europe is one of the continents with the longest histories of land conversion from forest to farmland, thus understanding land cover change in this area is globally significant. This study applies the pseudobiomization method (PBM) to 982 pollen records from across Europe, taken from the European Pollen Database (EPD) to produce a first synthesis of pan-European land cover change for the period 9000 BP to present, in contiguous 200 year time intervals. The PBM transforms pollen proportions from each site to one of eight land cover classes (LCCs) that are directly comparable to the CORINE land cover classification. The proportion of LCCs represented in each time window provides a spatially aggregated record of land cover change for temperate and northern Europe, and for a series of case study regions (western France, the western Alps, and the Czech Republic and Slovakia). At the European scale, the impact of Neolithic food producing economies appear to be detectable from 6000 BP through reduction in broad-leaf forests resulting from human land use activities such as forest clearance. Total forest cover at a pan-European scale moved outside the range of previous background variability from 4000 BP onwards. From 2200 BP land cover change intensified, and the broad pattern of land cover for preindustrial Europe was established by 1000 BP. Recognizing the timing of anthropogenic land cover change in Europe will further the understanding of land cover-climate interactions, and the origins of the modern cultural landscape.
Resumo:
Paesaggio ed infrastrutture viarie sono un binomio molto forte: il primo ha insito il concetto di accessibilità, in quanto non può esistere senza la presenza di un osservatore; la strada, invece, trova i fattori che la connotano nel suo rapporto con la morfologia su cui insiste. Le infrastrutture viarie sono elemento strutturale e strutturante non solo di un territorio, ma anche di un paesaggio. Le attuali esigenze di mobilità portano oggi a ripensare ed adeguare molte infrastrutture viarie: laddove è possibile si potenziano le strutture esistenti, in diversi casi si ricorre a nuovi tracciati o a varianti di percorso. Porsi il problema di conservare itinerari testimoni della cultura materiale ed economica di una società implica considerazioni articolate, che travalicano i limiti del sedime: una via è un organismo più complesso della semplice linea di trasporto in quanto implica tutta una serie di manufatti a supporto della mobilità e soprattutto il corridoio infrastrutturale che genera e caratterizza, ovvero una porzione variabile di territorio definita sia dal tracciato che dalla morfologia del contesto. L’evoluzione dei modelli produttivi ed economici, che oggi porta quote sempre maggiori di popolazione a passare un tempo sempre minore all’interno del proprio alloggio, rende la riflessione sulle infrastrutture viarie dismesse o declassate occasione per la progettazione di spazi per l’abitare collettivo inseriti in contesti paesaggistici, tanto urbani che rurali, tramite reti di percorsi pensate per assorbire tagli di mobilità specifici e peculiari. Partendo da queste riflessioni la Tesi si articola in: Individuazioni del contesto teorico e pratico: Lo studio mette in evidenza come la questione delle infrastrutture viarie e del loro rapporto con il paesaggio implichi riflessioni incrociate a diversi livelli e tramite diverse discipline. La definizione dello spazio fisico della strada passa infatti per la costruzione di un itinerario, un viaggio che si appoggia tanto ad elementi fisici quanto simbolici. La via è un organismo complesso che travalica il proprio sedime per coinvolgere una porzione ampia di territorio, un corridoio variabile ed articolato in funzione del paesaggio attraversato. Lo studio propone diverse chiavi di lettura, mettendo in luce le possibili declinazioni del tema, in funzione del taglio modale, del rapporto con il contesto, del regime giuridico, delle implicazioni urbanistiche e sociali. La mobilità dolce viene individuata quale possibile modalità di riuso, tutela e recupero, del patrimonio diffuso costituito dalle diversi reti di viabilità. Antologia di casi studio: Il corpo principale dello studio si basa sulla raccolta, analisi e studio dello stato dell’arte nel settore; gli esempi raccolti sono presentati in due sezioni: la prima dedicata alle esperienze più significative ed articolate, che affrontano il recupero delle infrastrutture viarie a più livelli ed in modo avanzato non concentrandosi solo sulla conversione del sedime, ma proponendo un progetto che coinvolga tutto il corridoio attraversato dall’infrastruttura; la seconda parte illustra la pratica corrente nelle diverse realtà nazionali, ponendo in evidenza similitudini e differenze tra i vari approcci.
Resumo:
Despite research that has been conducted elsewhere, little is known, to-date, about land cover dynamics and their impacts on land surface temperature (LST) in fast growing mega cities of developing countries. Landsat satellite images of 1989, 1999, and 2009 of Dhaka Metropolitan (DMP) area were used for analysis. This study first identified patterns of land cover changes between the periods and investigated their impacts on LST; second, applied artificial neural network to simulate land cover changes for 2019 and 2029; and finally, estimated their impacts on LST in respective periods. Simulation results show that if the current trend continues, 56% and 87% of the DMP area will likely to experience temperatures in the range of greater than or equal to 30°C in 2019 and 2029, respectively. The findings possess a major challenge for urban planners working in similar contexts. However, the technique presented in this paper would help them to quantify the impacts of different scenarios (e.g., vegetation loss to accommodate urban growth) on LST and consequently to devise appropriate policy measures.
Resumo:
Electrical resistivity of soils and sediments is strongly influenced by the presence of interstitial water. Taking advantage of this dependency, electrical-resistivity imaging (ERI) can be effectively utilized to estimate subsurface soil-moisture distributions. The ability to obtain spatially extensive data combined with time-lapse measurements provides further opportunities to understand links between land use and climate processes. In natural settings, spatial and temporal changes in temperature and porewater salinity influence the relationship between soil moisture and electrical resistivity. Apart from environmental factors, technical, theoretical, and methodological ambiguities may also interfere with accurate estimation of soil moisture from ERI data. We have examined several of these complicating factors using data from a two-year study at a forest-grassland ecotone, a boundary between neighboring but different plant communities.At this site, temperature variability accounts for approximately 20-45 of resistivity changes from cold winter to warm summer months. Temporal changes in groundwater conductivity (mean=650 S/cm =57.7) and a roughly 100-S/cm spatial difference between the forest and grassland had only a minor influence on the moisture estimates. Significant seasonal fluctuations in temperature and precipitation had negligible influence on the basic measurement errors in data sets. Extracting accurate temporal changes from ERI can be hindered by nonuniqueness of the inversion process and uncertainties related to time-lapse inversion schemes. The accuracy of soil moisture obtained from ERI depends on all of these factors, in addition to empirical parameters that define the petrophysical soil-moisture/resistivity relationship. Many of the complicating factors and modifying variables to accurately quantify soil moisture changes with ERI can be accounted for using field and theoretical principles.
Resumo:
Spatially explicit information on local perceptions of ecosystem services is needed to inform land use planning within rapidly changing landscapes. In this paper we spatially modelled local people's use and perceptions of benefits from forest ecosystem services in Borneo, from interviews of 1837 people in 185 villages. Questions related to provisioning, cultural/spiritual, regulating and supporting ecosystem services derived from forest, and attitudes towards forest conversion. We used boosted regression trees (BRTs) to combine interview data with social and environmental predictors to understand spatial variation of perceptions across Borneo. Our results show that people use a variety of products from intact and highly degraded forests. Perceptions of benefits from forests were strongest: in human-altered forest landscapes for cultural and spiritual benefits; in human-altered and intact forests landscapes for health benefits; intact forest for direct health benefits, such as medicinal plants; and in regions with little forest and extensive plantations, for environmental benefits, such as climatic impacts from deforestation. Forest clearing for small scale agriculture was predicted to be widely supported yet less so for large-scale agriculture. Understanding perceptions of rural communities in dynamic, multi-use landscapes is important where people are often directly affected by the decline in ecosystem services.
Resumo:
Over the last few decades, there has been a significant land cover (LC) change across the globe due to the increasing demand of the burgeoning population and urban sprawl. In order to take account of the change, there is a need for accurate and up-to-date LC maps. Mapping and monitoring of LC in India is being carried out at national level using multi-temporal IRS AWiFS data. Multispectral data such as IKONOS, Landsat-TM/ETM+, IRS-ICID LISS-III/IV, AWiFS and SPOT-5, etc. have adequate spatial resolution (similar to 1m to 56m) for LC mapping to generate 1:50,000 maps. However, for developing countries and those with large geographical extent, seasonal LC mapping is prohibitive with data from commercial sensors of limited spatial coverage. Superspectral data from the MODIS sensor are freely available, have better temporal (8 day composites) and spectral information. MODIS pixels typically contain a mixture of various LC types (due to coarse spatial resolution of 250, 500 and 1000 in), especially in more fragmented landscapes. In this context, linear spectral unmixing would be useful for mapping patchy land covers, such as those that characterise much of the Indian subcontinent. This work evaluates the existing unmixing technique for LC mapping using MODIS data, using end-members that are extracted through Pixel Purity Index (PPI), Scatter plot and N-dimensional visualisation. The abundance maps were generated for agriculture, built up, forest, plantations, waste land/others and water bodies. The assessment of the results using ground truth and a LISS-III classified map shows 86% overall accuracy, suggesting the potential for broad-scale applicability of the technique with superspectral data for natural resource planning and inventory applications. Index Terms-Remote sensing, digital
Resumo:
Remote sensing provides methods to infer land cover information over large geographical areas at a variety of spatial and temporal resolutions. Land cover is input data for a range of environmental models and information on land cover dynamics is required for monitoring the implications of global change. Such data are also essential in support of environmental management and policymaking. Boreal forests are a key component of the global climate and a major sink of carbon. The northern latitudes are expected to experience a disproportionate and rapid warming, which can have a major impact on vegetation at forest limits. This thesis examines the use of optical remote sensing for estimating aboveground biomass, leaf area index (LAI), tree cover and tree height in the boreal forests and tundra taiga transition zone in Finland. The continuous fields of forest attributes are required, for example, to improve the mapping of forest extent. The thesis focus on studying the feasibility of satellite data at multiple spatial resolutions, assessing the potential of multispectral, -angular and -temporal information, and provides regional evaluation for global land cover data. Preprocessed ASTER, MISR and MODIS products are the principal satellite data. The reference data consist of field measurements, forest inventory data and fine resolution land cover maps. Fine resolution studies demonstrate how statistical relationships between biomass and satellite data are relatively strong in single species and low biomass mountain birch forests in comparison to higher biomass coniferous stands. The combination of forest stand data and fine resolution ASTER images provides a method for biomass estimation using medium resolution MODIS data. The multiangular data improve the accuracy of land cover mapping in the sparsely forested tundra taiga transition zone, particularly in mires. Similarly, multitemporal data improve the accuracy of coarse resolution tree cover estimates in comparison to single date data. Furthermore, the peak of the growing season is not necessarily the optimal time for land cover mapping in the northern boreal regions. The evaluated coarse resolution land cover data sets have considerable shortcomings in northernmost Finland and should be used with caution in similar regions. The quantitative reference data and upscaling methods for integrating multiresolution data are required for calibration of statistical models and evaluation of land cover data sets. The preprocessed image products have potential for wider use as they can considerably reduce the time and effort used for data processing.
Resumo:
Land cover (LC) changes play a major role in global as well as at regional scale patterns of the climate and biogeochemistry of the Earth system. LC information presents critical insights in understanding of Earth surface phenomena, particularly useful when obtained synoptically from remote sensing data. However, for developing countries and those with large geographical extent, regular LC mapping is prohibitive with data from commercial sensors (high cost factor) of limited spatial coverage (low temporal resolution and band swath). In this context, free MODIS data with good spectro-temporal resolution meet the purpose. LC mapping from these data has continuously evolved with advances in classification algorithms. This paper presents a comparative study of two robust data mining techniques, the multilayer perceptron (MLP) and decision tree (DT) on different products of MODIS data corresponding to Kolar district, Karnataka, India. The MODIS classified images when compared at three different spatial scales (at district level, taluk level and pixel level) shows that MLP based classification on minimum noise fraction components on MODIS 36 bands provide the most accurate LC mapping with 86% accuracy, while DT on MODIS 36 bands principal components leads to less accurate classification (69%).
Resumo:
Over the last few decades, there has been a significant land cover (LC) change across the globe due to the increasing demand of the burgeoning population and urban sprawl. In order to take account of the change, there is a need for accurate and up- to-date LC maps. Mapping and monitoring of LC in India is being carried out at national level using multi-temporal IRS AWiFS data. Multispectral data such as IKONOS, Landsat- TM/ETM+, IRS-1C/D LISS-III/IV, AWiFS and SPOT-5, etc. have adequate spatial resolution (~ 1m to 56m) for LC mapping to generate 1:50,000 maps. However, for developing countries and those with large geographical extent, seasonal LC mapping is prohibitive with data from commercial sensors of limited spatial coverage. Superspectral data from the MODIS sensor are freely available, have better temporal (8 day composites) and spectral information. MODIS pixels typically contain a mixture of various LC types (due to coarse spatial resolution of 250, 500 and 1000 m), especially in more fragmented landscapes. In this context, linear spectral unmixing would be useful for mapping patchy land covers, such as those that characterise much of the Indian subcontinent. This work evaluates the existing unmixing technique for LC mapping using MODIS data, using end- members that are extracted through Pixel Purity Index (PPI), Scatter plot and N-dimensional visualisation. The abundance maps were generated for agriculture, built up, forest, plantations, waste land/others and water bodies. The assessment of the results using ground truth and a LISS-III classified map shows 86% overall accuracy, suggesting the potential for broad-scale applicability of the technique with superspectral data for natural resource planning and inventory applications.
Resumo:
Bangalore is experiencing unprecedented urbanisation in recent times due to concentrated developmental activities with impetus on IT (Information Technology) and BT (Biotechnology) sectors. The concentrated developmental activities has resulted in the increase in population and consequent pressure on infrastructure, natural resources, ultimately giving rise to a plethora of serious challenges such as urban flooding, climate change, etc. One of the perceived impact at local levels is the increase in sensible heat flux from the land surface to the atmosphere, which is also referred as heat island effect. In this communication, we report the changes in land surface temperature (LST) with respect to land cover changes during 1973 to 2007. A novel technique combining the information from sub-pixel class proportions with information from classified image (using signatures of the respective classes collected from the ground) has been used to achieve more reliable classification. The analysis showed positive correlation with the increase in paved surfaces and LST. 466% increase in paved surfaces (buildings, roads, etc.) has lead to the increase in LST by about 2 ºC during the last 2 decades, confirming urban heat island phenomenon. LSTs’ were relatively lower (~ 4 to 7 ºC) at land uses such as vegetation (parks/forests) and water bodies which act as heat sinks.
Resumo:
This paper presents hierarchical clustering algorithms for land cover mapping problem using multi-spectral satellite images. In unsupervised techniques, the automatic generation of number of clusters and its centers for a huge database is not exploited to their full potential. Hence, a hierarchical clustering algorithm that uses splitting and merging techniques is proposed. Initially, the splitting method is used to search for the best possible number of clusters and its centers using Mean Shift Clustering (MSC), Niche Particle Swarm Optimization (NPSO) and Glowworm Swarm Optimization (GSO). Using these clusters and its centers, the merging method is used to group the data points based on a parametric method (k-means algorithm). A performance comparison of the proposed hierarchical clustering algorithms (MSC, NPSO and GSO) is presented using two typical multi-spectral satellite images - Landsat 7 thematic mapper and QuickBird. From the results obtained, we conclude that the proposed GSO based hierarchical clustering algorithm is more accurate and robust.
Resumo:
This paper presents an improved hierarchical clustering algorithm for land cover mapping problem using quasi-random distribution. Initially, Niche Particle Swarm Optimization (NPSO) with pseudo/quasi-random distribution is used for splitting the data into number of cluster centers by satisfying Bayesian Information Criteria (BIC). Themain objective is to search and locate the best possible number of cluster and its centers. NPSO which highly depends on the initial distribution of particles in search space is not been exploited to its full potential. In this study, we have compared more uniformly distributed quasi-random with pseudo-random distribution with NPSO for splitting data set. Here to generate quasi-random distribution, Faure method has been used. Performance of previously proposed methods namely K-means, Mean Shift Clustering (MSC) and NPSO with pseudo-random is compared with the proposed approach - NPSO with quasi distribution(Faure). These algorithms are used on synthetic data set and multi-spectral satellite image (Landsat 7 thematic mapper). From the result obtained we conclude that use of quasi-random sequence with NPSO for hierarchical clustering algorithm results in a more accurate data classification.
Resumo:
Variable Endmember Constrained Least Square (VECLS) technique is proposed to account endmember variability in the linear mixture model by incorporating the variance for each class, the signals of which varies from pixel to pixel due to change in urban land cover (LC) structures. VECLS is first tested with a computer simulated three class endmember considering four bands having small, medium and large variability with three different spatial resolutions. The technique is next validated with real datasets of IKONOS, Landsat ETM+ and MODIS. The results show that correlation between actual and estimated proportion is higher by an average of 0.25 for the artificial datasets compared to a situation where variability is not considered. With IKONOS, Landsat ETM+ and MODIS data, the average correlation increased by 0.15 for 2 and 3 classes and by 0.19 for 4 classes, when compared to single endmember per class. (C) 2013 COSPAR. Published by Elsevier Ltd. All rights reserved.