974 resultados para Fractal-Like Structures


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustic emission (AE) technique is a popular tool used for structural health monitoring of civil, mechanical and aerospace structures. It is a non-destructive method based on rapid release of energy within a material by crack initiation or growth in the form of stress waves. Recording of these waves by means of sensors and subsequent analysis of the recorded signals convey information about the nature of the source. Ability to locate the source of stress waves is an important advantage of AE technique; but as AE waves travel in various modes and may undergo mode conversions, understanding of the modes (‘modal analysis’) is often necessary in order to determine source location accurately. This paper presents results of experiments aimed at finding locations of artificial AE sources on a thin plate and identifying wave modes in the recorded signal waveforms. Different source locating techniques will be investigated and importance of wave mode identification will be explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of a hybrid numerical simulation of the growth kinetics of carbon nanowall-like nanostructures in the plasma and neutral gas synthesis processes are presented. The low-temperature plasma-based process was found to have a significant advantage over the purely neutral flux deposition in providing the uniform size distribution of the nanostructures. It is shown that the nanowall width uniformity is the best (square deviations not exceeding 1.05) in high-density plasmas of 3.0× 1018 m-3, worsens in lower-density plasmas (up to 1.5 in 1.0× 1017 m-3 plasmas), and is the worst (up to 1.9) in the neutral gas-based process. This effect has been attributed to the focusing of ion fluxes by irregular electric field in the vicinity of plasma-grown nanostructures on substrate biased with -20 V potential, and differences in the two-dimensional adatom diffusion fluxes in the plasma and neutral gas-based processes. The results of our numerical simulations are consistent with the available experimental reports on the effect of the plasma process parameters on the sizes and shapes of relevant nanostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an approach for the inspection of vertical pole-like infrastructure using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structures, such as light and power distribution poles, is a time consuming, dangerous and expensive task with high operator workload. To address these issues, we propose a VTOL platform that can operate at close-quarters, whilst maintaining a safe stand-off distance and rejecting environmental disturbances. We adopt an Image based Visual Servoing (IBVS) technique using only two line features to stabilise the vehicle with respect to a pole. Visual, inertial and sonar data are used, making the approach suitable for indoor or GPS-denied environments. Results from simulation and outdoor flight experiments demonstrate the system is able to successfully inspect and circumnavigate a pole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural health monitoring of existing infrastructure is currently an active field of research, where elaborate experimental programs and advanced analytical methods are used in identifying the current state of health of critical structures. Change of static deflection as the indicator of damage is the simplest tool in a structural health monitoring scenario of bridges that is least exploited in damage identification strategies. In this paper, some simple and elegant equations based on loss of symmetry due to damage are derived and presented for identification of damage in a bridge girder modeled as a simply supported beam using changes in static deflections and dynamic parameters. A single contiguous and distributed damage, typical of reinforced or prestressed concrete structures, is assumed for the structure. The methodology is extended for a base-line-free as well as base-line-inclusive measurement. Measurement strategy involves application of loads only at two symmetric points one at a time and deflection measurements at those symmetric points as well as at the midspan of the beam. A laboratory-based experiment is used to validate the approach. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A facile, environmentally friendly approach to synthesize branched Ir nanochain-like structures under mild conditions, using polyfunctional capping molecules in an aqueous medium is reported; the nanostructures exhibit a surface plasmon resonance peak (SPR) in the visible region and serve as an active substrate for surface enhanced Raman scattering studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Newfound attention has been given to solute transport in nanochannels. Because the electric double layer (EDL) thickness is comparable to characteristic channel dimensions, nanochannels have been used to separate ionic species with a constant charge-to-size ratio (i.e., electrophoretic mobility) that otherwise cannot be separated in electroosmotic or pressure- driven flow along microchannels. In nanochannels, the electrical fields within the EDL cause transverse ion distributions and thus yield charge-dependent mean ion speeds in the flow. Surface roughness is usually inevitable during microfabrication of microchannels or nanochannels. Surface roughness is usually inevitable during the fabrication of nanochannels. In the present study, we develop a numerical model to investigate the transport of charged solutes in nanochannels with hundreds of roughness-like structures. The model is based on continuum theory that couples Navier-Stokes equations for flows, Poisson-Boltzmann equation for electrical fields, and Nernst-Planck equation for solute transports. Different operating conditions are considered and the solute transport patterns in rough channels are compared with those in smooth channels. Results indicate that solutes move slower in rough nanochannels than in smooth ones for both pressure- driven and electroosmotic flows. Moreover, solute separation can be significantly improved by surface roughness under certain circumstances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO vertical well-aligned nanorods were grown on A1N/sapphire by using metal-organic chemical vapor deposition. We first observed the ZnO net-like structures under the nanorods. The different strain was determined in these two layers by using double crystal X-ray diffraction, Raman spectra, which revealed that the nanorods were relaxed and the net-like structures were strained. The optical properties of two layers were measured by using the cathodoluminescence and photo luminescence and the shift of UV peaks was observed. Moreover, the growth mechanism of the ZnO nanorods and the net-like structures is discussed. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of unmagnetized electrostatic shock-like structures with a high Mach number is examined with one- and two-dimensional particle-in-cell (PIC) simulations. The structures are generated through the collision of two identical plasma clouds, which consist of equally hot electrons and ions with a mass ratio of 250. The Mach number of the collision speed with respect to the initial ion acoustic speed of the plasma is set to 4.6. This high Mach number delays the formation of such structures by tens of inverse ion plasma frequencies. A pair of stable shock-like structures is observed after this time in the 1D simulation, which gradually evolve into electrostatic shocks. The ion acoustic instability, which can develop in the 2D simulation but not in the 1D one, competes with the nonlinear process that gives rise to these structures. The oblique ion acoustic waves fragment their electric field. The transition layer, across which the bulk of the ions change their speed, widens and their speed change is reduced. Double layer-shock hybrid structures develop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents the Radar Cross Section measurements of different geometric structures such as flat plate,cylinder, corner reflector and circular cone loaded with fractal based metallo dielectric structures.Use of different fractal geometris,metallizations of different shapes as well as the frequency tanability is investigated for TE and TM polarization of the incident electromagnetic field.Application of fractal based metallo-dielectric structures results in RCS reduction over a wide range of frequency bands.RCS enhancement of dihedral corner is observed at certain acute and obtuse corner angles.The experimental results are validated using electromagnetic simulation softwares.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single crystal X-ray diffraction studies and solvent dependent H-1 NMR titrations reveal that a set of four tetrapeptides with general formula Boc-Xx(1)-Aib(2)-Yy(3)-Zz(4)-OMe, where Xx, Yy and Zz are coded L- amino acids, adopt equivalent conformations that can be described as overlapping double turn conformations stabilized by two 4 -> 1 intramolecular hydrogen bonds between Yy(3)-NH and Boc C=O and Zz(4)-NH and Xx(1)C=O. In the crystalline state, the double turn structures are packed in head-to-tail fashion through intermolecular hydrogen bonds to create supramolecular helical structures. Field emission scanning electron microscopic (FE-SEM) images of the tetrapeptides in the solid state reveal that they can form flat tape-like structures. The results establish that synthetic Aib containing supramolecular helices can form highly ordered self-aggregated amyloid plaque like human amylin.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The actin nodule is a novel F-actin structure present in platelets during early spreading. However, only limited detail is known regarding nodule organization and function. Here we use electron microscopy, SIM and dSTORM super-resolution, and live-cell TIRF microscopy to characterize the structural organization and signalling pathways associated with nodule formation. Nodules are composed of up to four actin-rich structures linked together by actin bundles. They are enriched in the adhesion-related proteins talin and vinculin, have a central core of tyrosine phosphorylated proteins and are depleted of integrins at the plasma membrane. Nodule formation is dependent on Wiskott-Aldrich syndrome protein (WASp) and the ARP2/3 complex. WASp(-/-) mouse blood displays impaired platelet aggregate formation at arteriolar shear rates. We propose actin nodules are platelet podosome-related structures required for platelet-platelet interaction and their absence contributes to the bleeding diathesis of Wiskott-Aldrich syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the QCD sum rules we test if the charmonium-like structure Y(4274), observed in the J/psi phi invariant mass spectrum, can be described with a D(s)(D) over bar (s0)(2317)+ h.c. molecular current with J(PC) = 0(-+). We consider the contributions of condensates up to dimension ten and we work at leading order in alpha(s). We keep terms which are linear in the strange quark mass m(s). The mass obtained for such state is mD(s)D(s0) = (4.78 +/- 0.54) GeV. We also consider a molecular 0(-+) D (D) over bar (0)(2400)+ h.c. current and we obtain m(DD0) = (4.55 +/- 0.49) GeV. Our study shows that the newly observed Y(4274) in the J/psi phi invariant mass spectrum can be, considering the uncertainties, described using a molecular charmonium current. (C) 2011 Elsevier B.V. All rights reserved.