3 resultados para Fractal-Like Structures

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future fossil fuel scarcity and environmental degradation have demonstrated the need for renewable, low-carbon sources of energy to power an increasingly industrialized world. Solar energy with its infinite supply makes it an extraordinary resource that should not go unused. However with current materials, adoption is limited by cost and so a paradigm shift must occur to get everyone on the same page embracing solar technology. Cuprous Oxide (Cu2O) is a promising earth abundant material that can be a great alternative to traditional thin-film photovoltaic materials like CIGS, CdTe, etc. We have prepared Cu2O bulk substrates by the thermal oxidation of copper foils as well Cu2O thin films deposited via plasma-assisted Molecular Beam Epitaxy. From preliminary Hall measurements it was determined that Cu2O would need to be doped extrinsically. This was further confirmed by simulations of ZnO/Cu2O heterojunctions. A cyclic interdependence between, defect concentration, minority carrier lifetime, film thickness, and carrier concentration manifests itself a primary reason for why efficiencies greater than 4% has yet to be realized. Our growth methodology for our thin-film heterostructures allow precise control of the number of defects that incorporate into our film during both equilibrium and nonequilibrium growth. We also report process flow/device design/fabrication techniques in order to create a device. A typical device without any optimizations exhibited open-circuit voltages Voc, values in excess 500mV; nearly 18% greater than previous solid state devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nature of the subducted lithospheric slab is investigated seismologically by tomographic inversions of ISC residual travel times. The slab, in which nearly all deep earthquakes occur, is fast in the seismic images because it is much cooler than the ambient mantle. High resolution three-dimensional P and S wave models in the NW Pacific are obtained using regional data, while inversion for the SW Pacific slabs includes teleseismic arrivals. Resolution and noise estimations show the models are generally well-resolved.

The slab anomalies in these models, as inferred from the seismicity, are generally coherent in the upper mantle and become contorted and decrease in amplitude with depth. Fast slabs are surrounded by slow regions shallower than 350 km depth. Slab fingering, including segmentation and spreading, is indicated near the bottom of the upper mantle. The fast anomalies associated with the Japan, Izu-Bonin, Mariana and Kermadec subduction zones tend to flatten to sub-horizontal at depth, while downward spreading may occur under parts of the Mariana and Kuril arcs. The Tonga slab appears to end around 550 km depth, but is underlain by a fast band at 750-1000 km depths.

The NW Pacific model combined with the Clayton-Comer mantle model predicts many observed residual sphere patterns. The predictions indicate that the near-source anomalies affect the residual spheres less than the teleseismic contributions. The teleseismic contributions may be removed either by using a mantle model, or using teleseismic station averages of residuals from only regional events. The slab-like fast bands in the corrected residual spheres are are consistent with seismicity trends under the Mariana Tzu-Bonin and Japan trenches, but are inconsistent for the Kuril events.

The comparison of the tomographic models with earthquake focal mechanisms shows that deep compression axes and fast velocity slab anomalies are in consistent alignment, even when the slab is contorted or flattened. Abnormal stress patterns are seen at major junctions of the arcs. The depth boundary between tension and compression in the central parts of these arcs appears to depend on the dip and topology of the slab.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are the largest family of proteins within the human genome. They consist of seven transmembrane (TM) helices, with a N-terminal region of varying length and structure on the extracellular side, and a C-terminus on the intracellular side. GPCRs are involved in transmitting extracellular signals to cells, and as such are crucial drug targets. Designing pharmaceuticals to target GPCRs is greatly aided by full-atom structural information of the proteins. In particular, the TM region of GPCRs is where small molecule ligands (much more bioavailable than peptide ligands) typically bind to the receptors. In recent years nearly thirty distinct GPCR TM regions have been crystallized. However, there are more than 1,000 GPCRs, leaving the vast majority of GPCRs with limited structural information. Additionally, GPCRs are known to exist in a myriad of conformational states in the body, rendering the static x-ray crystal structures an incomplete reflection of GPCR structures. In order to obtain an ensemble of GPCR structures, we have developed the GEnSeMBLE procedure to rapidly sample a large number of variations of GPCR helix rotations and tilts. The lowest energy GEnSeMBLE structures are then docked to small molecule ligands and optimized. The GPCR family consists of five subfamilies with little to no sequence homology between them: class A, B1, B2, C, and Frizzled/Taste2. Almost all of the GPCR crystal structures have been of class A GPCRs, and much is known about their conserved interactions and binding sites. In this work we particularly focus on class B1 GPCRs, and aim to understand that family’s interactions and binding sites both to small molecules and their native peptide ligands. Specifically, we predict the full atom structure and peptide binding site of the glucagon-like peptide receptor and the TM region and small molecule binding sites for eight other class B1 GPCRs: CALRL, CRFR1, GIPR, GLR, PACR, PTH1R, VIPR1, and VIPR2. Our class B1 work reveals multiple conserved interactions across the B1 subfamily as well as a consistent small molecule binding site centrally located in the TM bundle. Both the interactions and the binding sites are distinct from those seen in the more well-characterized class A GPCRs, and as such our work provides a strong starting point for drug design targeting class B1 proteins. We also predict the full structure of CXCR4 bound to a small molecule, a class A GPCR that was not closely related to any of the class A GPCRs at the time of the work.