945 resultados para Fossil Vertebrate Footprints
Resumo:
© 2016 Elsevier Ltd.The early Miocene Santa Cruz Formation (SCF) in southern Patagonia hosts the Santacrucian South American Land Mammal Age (SALMA), whose age is known mainly from exposures along the Atlantic coast. Zircon U-Pb ages were obtained from intercalated tuffs from four inland sections of the SCF: 17.36 ± 0.63 Ma for the westernmost Río Bote locality, and 17.04 ± 0.55 Ma-16.32 ± 0.62 Ma for central Río Santa Cruz localities. All ages agree with the bounding age of underlying marine units and with equivalent strata in coastal exposures. New ages and available sedimentation rates imply time spans for each section of ~18.2 to 17.36 Ma for Río Bote and 17.45-15.63 Ma for central Río Santa Cruz (Burdigalian). These estimates support the view that deposition of the SCF began at western localities ~1 Ma earlier than at eastern localities, and that the central Río Santa Cruz localities expose the youngest SCF in southern Santa Cruz Province. Associated vertebrate faunas are consistent with our geochronologic synthesis, showing older (Notohippidian) taxa in western localities and younger (Santacrucian) taxa in central localities. The Notohippidian fauna (19.0-18.0 Ma) of the western localities is synchronous with Pinturan faunas (19.0-18.0 Ma), but older than Santacrucian faunas of the Río Santa Cruz (17.2-15.6 Ma) and coastal localities (18.0-16.2 Ma). The Santacrucian faunas of the central Río Santa Cruz localities temporally overlap Colloncuran (15.7 Ma), Friasian (16.5 Ma), and eastern Santacrucian faunas.
Resumo:
From the record of dinosaurian skeletal remains it has been inferred that the origin and initial diversification of dinosaurs were rapid events, occupying an interval of about 5 million years in the Late Triassic. By contrast numerous reports of dinosauroid tracks imply that the emergence of dinosaurs was a more protracted affair extending through much of the Early and Middle Triassic. This study finds no convincing evidence of dinosaur tracks before the late Ladinian. Each of the three dinosaurian clades - Theropoda, Sauropodomorpha, Ornithischia - produced a unique track morphotype that appears to be an independent modification of the chirotherioid pattern attributed to stem-group archosaurs (thecodontian reptiles). The existence of three divergent track morphotypes is consistent with the concept of dinosaurian polyphyly but can be reconciled with the hypothesis of dinosaurian monophyly only by invoking many and rapid reversals in the locomotor anatomy of early dinosaurs. The origin of dinosaurs was not the correlate or consequence of any single event or process, be it global change, competitive replacement, or opportunism in the wake of mass extinction. Instead the origin of dinosaurs is envisaged as a series of three cladogenetic events over an interval of at least 10 million years and possibly as much as 25 million years. This scenario of dinosaurian polyphyly is as well-supported by fossil evidence as is the currently favoured view of dinosaurian monophyly.
Resumo:
"Second impression March 1936."
Resumo:
One articulated and several partial, semi-articulated specimens of acanthodians were collected in 1970 from the freshwater deposits of the Aztec Siltstone (Middle Devonian; Givetian), Portal Mountain, southern Victoria Land, Antarctica, during a Victoria University of Wellington Antarctic Expedition. The Portal Mountain fish fauna, preserved in a finely laminated, non-calcareous siltstone, includes acanthodians, palaeoniscoids, and bothriolepid placoderms. The articulated acanthodian specimens are the most complete fossil fish remains documented so far from the Aztec assemblage, which is the most diverse fossil vertebrate fauna known from Antarctica. They are described as a new taxon, Milesacanthus antarctica gen. et sp. nov., which is assigned to the family Diplacanthidae. Its fin spines show some similarities to spine fragments named Byssacanthoides debenhami from glacial moraine at Granite Harbour, Antarctica, and much larger spines named Antarctonchus glacialis from outcrops of the Aztec Siltstone in the Boomerang Range, southern Victoria Land. Both of these are reviewed, and retained as form taxa for isolated spines. Various isolated remains of fin spines and scales are described from Portal Mountain and Mount Crean (Lashly Range), and referred to Milesacanthus antarctica gen. et sp. nov. The histology of spines and scales is documented for the first time, and compared with acanthodian material from the Devonian of Australia and Europe. Distinctive fin spines from Mount Crean are provisionally assigned to Culmacanthus antarctica Young, 1989b. Several features on the most complete of the new fish specimens - in particular, the apparent lack of an enlarged cheek plate - suggest a revision of the diagnosis for the Diplacanthidae.
Resumo:
The ‘Continental Intercalaire’ deposits of the Tataouine basin of southern Tunisia preserve one of the most diverse Cretaceous vertebrate fauna from Africa. This research project focuses on a detailed revision of the stratigraphic distribution of mid-Cretaceous fossil beds in the Tataouine Basin and includes the description of four, newly discovered vertebrate tracksites. In the Tataouine region, macro- and microvertebrate remains are recovered from three stratigraphic intervals: the lower Douiret Formation (Barremian), the Chenini (rare) and Oum ed Diab members of the Aïn El Guettar Formation (Albian). A detailed, basin-scale revision of the stratigraphic occurrence of fossil-bearing strata indicates 1. lateral facies variability within the context of a low gradient, circalittoral to coastal-plain environment; 2. multiple and diachronous fossil beds which include elasmobranchs, actinopterygians, sarcopterygians, turtles, crocodyliforms, pterosaurs, and non-avian dinosaurs remains. Four vertebrate tracksites have been discovered in the study area: 1. the Middle Jurassic Beni Ghedir site which preserves approximately 130 tridactyl footprints distributed over an area of 200 square meters, representing the oldest evidence of a dinosaur fauna in Tunisia; 2. the late Albian Chenini tracksite, which includes poorly preserved crocodilian tracks and the dinosaur ichnospecies Apulosauripus federicianus; 3. the Cenomanian Ksar Ayaat locality, where footprints assigned to a pleurodiran turtle are exposed, and 4. the upper Cenomanian Jebel Boulouha site which presents almost 100 well-preserved tridactyl tracks referred to small-sized theropods, fossil bird tracks - ichnogenus Koreanaorins – and tracks referred to a mammalian trackmaker, representing the first report of fossil bird and mammal from the Cretaceous of continental Africa and Tunisia respectively. In addition, data collected from the Tunisian tracksites have been compared with coeval tracksites in Italy and Croatia, showing analogies in morphology and paleoenvironment of dinosaur ichnoassociations, supporting the already hypothesized subaerial connection between these areas during the mid-Cretaceous.
Resumo:
Rare earth elements (REE), while not essential for the physiologic functions of animals, are ingested and incorporated in ppb concentrations in bones and teeth. Nd isotope compositions of modern bones of animals from isotopically distinct habitats demonstrate that the (143)Nd/(144)Nd of the apatite can be used as a fingerprint for bedrock geology or ambient water mass. This potentially allows the provenance and migration of extant vertebrates to be traced, similar to the use of Sr isotopes. Although REE may be enriched by up to 5 orders of magnitude during diagenesis and recrystallization of bone apatite, in vivo (143)Nd/(144)Nd may be preserved in the inner cortex of fossil bones or enamel. However, tracking the provenance of ancient or extinct vertebrates is possible only for well-preserved archeological and paleontological skeletal remains with in vivo-like Nd contents at the ppb-level. Intra-bone and -tooth REE analysis can be used to screen for appropriate areas. Large intra-bone Nd concentration gradients of 10(1)-10(3) are often measured. Nd concentrations in the inner bone cortex increase over timescales of millions of years, while bone rims may be enriched over millenial timescales. Nevertheless, epsilon(Nd) values are often similar within one epsilon(Nd) unit within a single bone. Larger intra-bone differences in specimens may either reflect a partial preservation of in vivo values or changing epsilon(Nd) values of the diagenetic fluid during fossilization. However, most fossil specimens and the outer rims of bones will record taphonomic (143)Nd/(144)Nd incorporated post mortem during diagenesis. Unlike REE patterns, (143)Nd/(144)Nd are not biased by fractionation processes during REE-uptake into the apatite crystal lattice, hence the epsilon(Nd) value is an important tracer for taphonomy and reworking. Bones and teeth from autochthonous fossil assemblages have small variations of +/- 1 epsilon(Nd) unit only. In contrast, fossil bones and teeth from over 20 different marine and terrestrial fossil sites have a total range of epsilon(Nd) values from -13.0 to 4.9 (n = 80), often matching the composition of the embedding sediment. This implies that the surrounding sediment is the source of Nd in the fossil bones and that the specimens of this study seem not to have been reworked. Differences in epsilon(Nd) values between skeletal remains and embedding sediment may either indicate reworking of fossils and/or a REE-uptake from a diagenetic fluid with non-sediment derived epsilon(Nd) values. The latter often applies to fossil shark teeth, which may preserve paleo-seawater values. Complementary to epsilon(Nd) values, (87)Sr/(86)Sr can help to further constrain the fossil provenance and reworking. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Fossil associations from the middle and upper Eocene (Bartonian and Priabonian) sedimentary succession of the Pamplona Basin are described. This succession was accumulated in the western part of the South Pyrenean peripheral foreland basin and extends from deep-marine turbiditic (Ezkaba Sandstone Formation) to deltaic (Pamplona Marl, Ardanatz Sandstone and Ilundain Marl formations) and marginal marine deposits (Gendulain Formation). The micropalaeontological content is high. It is dominated by foraminifera, and common ostracods and other microfossils are also present. The fossil ichnoasssemblages include at least 23 ichnogenera and 28 ichnospecies indicative of Nereites, Cruziana, Glossifungites and ?Scoyenia-Mermia ichnofacies. Body macrofossils of 78 taxa corresponding to macroforaminifera, sponges, corals, bryozoans, brachiopods, annelids, molluscs, arthropods, echinoderms and vertebrates have been identified. Both the number of ichnotaxa and of species (e. g. bryozoans, molluscs and condrichthyans) may be considerably higher. Body fossil assemblages are comparable to those from the Eocene of the Nord Pyrenean area (Basque Coast), and also to those from the Eocene of the west-central and eastern part of South Pyrenean area (Aragon and Catalonia). At the European scale, the molluscs assemblages seem endemic from the Pyrenean area, although several Tethyan (Italy and Alps) and Northern elements (Paris basin and Normandy) have been recorded. Palaeontological data of studied sedimentary units fit well with the shallowing process that throughout the middle and late Eocene occurs in the area, according to the sedimentological and stratigraphical data.
Resumo:
Traumatic injury to the dentition of dipnoans, indirectly as a result of jaw fracture, or directly from damage to the tooth tissues, is present throughout the history of this group, in fossil and in Recent material. Bones heal, but traces of the injury are retained in the tooth tissues, permanently if the proliferative regions of the tooth plate are injured, or until the damaged dentines are removed by wear if the growing regions are left intact. Lack of resorption and repair of damaged dental hard tissues in dipnoans has implications for some models of tooth plate growth in lungfish with a permanent dentition, because this indicates that lungfish tooth plates may not have the capacity to form reparative dentine as part of the normal growth processes.
Resumo:
The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains similar to16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.
Resumo:
A new Lower Cretaceous (Aptian-Albian) dinosaur tracksite at the Olhos de Água beach is described. It is the first vertebrate fossil finding ever found in the concerned unit, and yielded 128 tracks in 17 trackways within an area of ca. 80 square metres. Three tridactyl footprint morphotypes have been recognized: - Type I ("Iguanodontipus-like") - trackways D, F, K, J and P; - Type 2 (large theropod), although larger in size, typically from a Grallator-like theropod footprint, i.e , A, B, G, H and 0 trackways; - Type 3 (medium size theropod); M is the only track of this type. There are other, poorly preserved, unidentified trackways. The theropod, swinging trackway B was produced by an animal that was limping. The theropod track M starts eastwards but drastically changes westwards, speeding up at the same time; this dinosaur decided to turn around and run in the opposite direction. This site shows three main trackway directions: to the South, to the East, and westwards. Except for the trackway 0, large theropods A, B, G and H walked southwards. Perpendicularly to the se, ornithopods, small theropods and unidentified trackmakers walked towards East (5) and West (7). The segregation oftrackmakers and directions, with large theropod traekways southwards and other dinosaurs' west or eastwards, may mean that large theropods patrolled a walkway area to an important resource, most probably water, often frequented by ornithopods and smaller theropods. There is no evidence of social behavior or gregarism: footprints' overposition shows that the large, southwards walking theropods passed on different occasions. Three trackway sequences can be established by chronologic order.
Resumo:
The diverse vertebrate remains from the Upper Cretaceous freshwater settings at Iharkut, Hungary, contain two fossil groups, Pycnodontiformes fish and Mosasauridae that are almost exclusively known from marine palaeo-environments. Hence, their appearance in alluvial sediments is very unusual. Trace element and isotope compositions of the remains have been analyzed to investigate the taphonomy and the ecological differences among the different fossil groups present at Iharkut. All examined fossils have undergone post-depositional diagenetic alteration, which resulted in high concentrations of REE, U, and Fe, together with almost complete homogenization of delta(18)O(CO3) values. Similar REE patterns in different fossils suggest a common origin for all remains, hence the discovered species most likely lived in the same local ecosystem. Despite partial diagenetic overprinting, the delta(18)O(PO4) values of the fossils indicate sufficient taxon-specific isotopic diversity to permit some broad conclusions on the palaeo-environment of the fossils. In particular, it is apparent that the isotopic composition of the Pycnodontiformes fish and Mosasauridae remains is most compatible with a freshwater palaeo-habitat and incompatible with a marine palaeo-environment. In addition, the Sr concentration and isotope data indicate that the Pycnodontiformes and Mosasauridae likely lived predominantly in a freshwater environment and were not simply occasional visitors to the Iharkut river ecosystem. Regarding other fossil groups, high delta(18)O(PO4) values of Alligatoroidea and Iharkutosuchus teeth suggest that these small crocodile species might have inhabited swamps and ponds where the water was relatively rich in (18)O due to evaporation. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Recolonization of Europe by forest tree species after the last glaciation is well documented in the fossil pollen record. This spread may have been achieved at low densities by rare events of long-distance dispersal, rather than by a compact wave of advance, generating a patchy genetic structure through founder effects. In long-lived oak species, this structure could still be discernible by using maternally transmitted genetic markers. To test this hypothesis, a fine-scale study of chloroplast DNA (cpDNA) variability of two sympatric oak species was carried out in western France. The distributions of six cpDNA length variants were analyzed at 188 localities over a 200 × 300 km area. A cpDNA map was obtained by applying geostatistics methods to the complete data set. Patches of several hundred square kilometers exist which are virtually fixed for a single haplotype for both oak species. This local systematic interspecific sharing of the maternal genome strongly suggests that long-distance seed dispersal events followed by interspecific exchanges were involved at the time of colonization, about 10,000 years ago.
Resumo:
We have shown previously by Southern blot analysis that Bov-B long interspersed nuclear elements (LINEs) are present in different Viperidae snake species. To address the question as to whether Bov-B LINEs really have been transmitted horizontally between vertebrate classes, the analysis has been extended to a larger number of vertebrate, invertebrate, and plant species. In this paper, the evolutionary origin of Bov-B LINEs is shown unequivocally to be in Squamata. The previously proposed horizontal transfer of Bov-B LINEs in vertebrates has been confirmed by their discontinuous phylogenetic distribution in Squamata (Serpentes and two lizard infra-orders) as well as in Ruminantia, by the high level of nucleotide identity, and by their phylogenetic relationships. The horizontal transfer of Bov-B LINEs from Squamata to the ancestor of Ruminantia is evident from the genetic distances and discontinuous phylogenetic distribution. The ancestor of Colubroidea snakes is a possible donor of Bov-B LINEs to Ruminantia. The timing of horizontal transfer has been estimated from the distribution of Bov-B LINEs in Ruminantia and the fossil data of Ruminantia to be 40–50 My ago. The phylogenetic relationships of Bov-B LINEs from the various Squamata species agrees with that of the species phylogeny, suggesting that Bov-B LINEs have been maintained stably by vertical transmission since the origin of Squamata in the Mesozoic era.