933 resultados para Form phenol sulfotransferases
Resumo:
Human SULT1A1 is primarily responsible for sulfonation of xenobiotics, including the activation of promutagens, and it has been implicated in several forms of cancer. Human SULT1A3 has been shown to be the major sulfotransferase that sulfonates dopamine. These two enzymes shares 93% amino acid sequence identity and have distinct but overlapping substrate preferences. The resolution of the crystal structures of these two enzymes has enabled us to elucidate the mechanisms controlling their substrate preferences and inhibition. The presence of two p-nitrophenol (pNP) molecules in the crystal structure of SULT1A1 was postulated to explain cooperativity at low and inhibition at high substrate concentrations, respectively. In SULT1A1, substrate inhibition occurs with pNP as the substrate but not with dopamine. For SULT1A3, substrate inhibition is found for dopamine but not with pNP. We investigated how substrate inhibition occurs in these two enzymes using molecular modeling, site-directed mutagenesis, and kinetic analysis. The results show that residue Phe-247 of SULT1A1, which interacts with both p-nitrophenol molecules in the active site, is important for substrate inhibition. Mutation of phenylalanine to leucine at this position in SULT1A1 results in substrate inhibition by dopamine. We also propose, based on modeling and kinetic studies, that substrate inhibition by dopamine in SULT1A3 is caused by binding of two dopamine molecules in the active site. © 2004 by The American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
The guinea pig estrogen sulfotransferase gene has been cloned and compared to three other cloned steroid and phenol sulfotransferase genes (human estrogen sulfotransferase, human phenol sulfotransferase, and guinea pig 3 alpha-hydroxysteroid sulfotransferase). The four sulfotransferase genes demonstrate a common outstanding feature: the splice sites for their 3'-terminal exons are identically located. That is, the 3'-terminal exon splice sites involve a glycine that constitutes the N-terminal glycine of an invariably conserved GXXGXXK motif present in all steroid and phenol sulfotransferases for which primary structures are known. This consistency strongly suggests that all steroid and phenol sulfotransferase genes will be similarly spliced. The GXXGXXK motif forms the active binding site for the universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate. Amino acid sequence alignment of 19 cloned steroid and phenol sulfotransferases starting with the GXXGXXK motif indicates that the 3'-terminal exon for each steroid and phenol sulfotransferase gene encodes a similarly sized C-terminal fragment of the protein. Interestingly, on further analysis of the alignment, three distinct amino acid sequence patterns emerge. The presence of the conserved functional GXXGXXK motif suggests that the protein domains encoded by steroid and phenol sulfotransferase 3'-terminal exons have evolved from a common ancestor. Furthermore, it is hypothesized that during the course of evolution, the 3'-terminal exon further diverged into at least three sulfotransferase subdivisions: a phenol or aryl group, an estrogen or phenolic steroid group, and a neutral steroid group.
Resumo:
The electrochemistry of phenol and 4-tert-butyl-phenol is described in [C(2)mim][NTf2] and [C(4)mpyrr][NTf2] ionic liquids. Oxidation of phenol and phenolate is observed at E-p(a) = +1.64 and +0.24 V vs. Ag in both ionic liquids. On the cathodic sweep at a potential of -2.05 P 02 V vs. Ag under an oxygen atmosphere, the production of O-2(2-) dianions triggers the formation of phenolate anions which undergo chemical oxidation to the phenoxyl radical. The phenoxyl radical then reacts with the [NTf2](-) anion of the ionic liquid to form the corresponding phenyl triflate molecule. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Electrochemical processes in industrial effluents have been studied as a means to obtain higher efficiency in wastewater treatment. Heterogeneous photocatalysis appears as a low-cost alternative through the use of lower wattage lamps and thermal TiO2 films. Photocatalysis became a clean process for water treatment due to hydroxyl radicals generated on semiconductor surface. Such radicals are able to degrade several organic compounds. This study used different electrodes and analytical methods for degradation of phenol molecules to reduce treatment costs, improve efficiency, and identify compounds formed during the decomposition of phenolic molecules. Thermal growth of TiO2 film was observed on the titanium electrode in rutile form. Application of an electrical potential on the Ti/TiO2 working electrode increases efficiency in reducing concentration of phenol after photocatalytic treatment. Still, high energy radiation (UVC) showed best degradation rates in photolytic process. Different compounds formed during the degradation of phenol were also identified in the UVC-PE treatment.
Resumo:
The addition of Cu2+ ions to the classical Fenton reaction (Fe2+ plus H2O2 at pH 3) is found to accelerate the degradation of organic compounds. This synergic effect causes an approximately 15 % additional reduction of the total organic carbon (TOC), representing an overall improvement of the efficiency of the mineralization of phenol. Although Fe2+ exhibits a high initial rate of degradation, the degradation is not complete due to the formation of compounds refractory to the hydroxyl radical. The interference of copper ions on the degradation of phenol by the Fenton reaction was investigated. In the presence of Cu2+, the degradation is slower, but results in a greater reduction of TOC at the end of the reaction (t = 120 min). In the final stages of the reaction, when the Fe3+ in the solution is complexed in the form of ferrioxalate, the copper ions assume the role of the main catalyst of the degradation.
Resumo:
The addition of Cu2+ ions to the classical Fenton reaction (Fe2+ plus H2O2 at pH 3) is found to accelerate the degradation of organic compounds. This synergic effect causes an approximately 15 % additional reduction of the total organic carbon (TOC), representing an overall improvement of the efficiency of the mineralization of phenol. Although Fe2+ exhibits a high initial rate of degradation, the degradation is not complete due to the formation of compounds refractory to the hydroxyl radical. The interference of copper ions on the degradation of phenol by the Fenton reaction was investigated. In the presence of Cu2+, the degradation is slower, but results in a greater reduction of TOC at the end of the reaction (t = 120 min). In the final stages of the reaction, when the Fe3+ in the solution is complexed in the form of ferrioxalate, the copper ions assume the role of the main catalyst of the degradation
Resumo:
The cuticle of the silkworm Bombyx mori was demonstrated to contain pro-phenol oxidase [zymogen of phenol oxidase (monophenol, L-dopa:oxygen oxidoreductase, EC 1.14.18.1)] and its activating cascade. The activating cascade contained at least one serine proteinase zymogen (latent form of pro-phenol oxidase activating enzyme). When the extracted cascade components were incubated with Ca2+, the latent form of pro-phenol oxidase activating enzyme was itself activated and, in turn, converted through a limited proteolysis of pro-phenol oxidase to phenol oxidase. Immuno-gold localization of prophenol oxidase in the cuticle using a cross-reactive hemolymph anti-pro-phenol oxidase antibody revealed a random distribution of this enzyme in the nonlamellate endocuticle and a specific orderly arrayed pattern along the basal border of the laminae in the lamellate endocuticle of the body wall. Furthermore, prophenol oxidase was randomly distributed in the taenidial cushion of the tracheal cuticle. At the time of pro-phenol oxidase accumulation in the body wall cuticle, no pro-phenol oxidase mRNA could be detected in the epidermal tissue, whereas free-circulating hemocytes contained numerous transcripts of pro-phenol oxidase. Our results suggest that the pro-phenol oxidase is synthesized in the hemocytes and actively transported into the cuticle via the epidermis.
Resumo:
Sulfonation is an important reaction in the metabolism of numerous xenobiotics, drugs, and endogenous compounds. A supergene family of enzymes called sulfotransferases (SULTs) catalyze this reaction. In most cases, the addition of a sulfonate moiety to a compound increases its water solubility and decreases its biological activity. However, many of these enzymes are also capable of bioactivating procarcinogens to reactive electrophiles. In humans three SULT families, SULT1, SULT2, and SULT4, have been identified that contain at least thirteen distinct members. SULTs have a wide tissue distribution and act as a major detoxification enzyme system in adult and the developing human fetus. Nine crystal structures of human cytosolic SULTs have now been determined, and together with site-directed mutagenesis experiments and molecular modeling, we are now beginning to understand the factors that govern distinct but overlapping substrate specificities. These studies have also provided insight into the enzyme kinetics and inhibition characteristics of these enzymes. The regulation of human SULTs remains as one of the least explored areas of research in the field, though there have been some recent advances on the molecular transcription mechanism controlling the individual SULT promoters. Interindividual variation in sulfonation capacity may be important in determining an individual's response to xenobiotics, and recent studies have begun to suggest roles for SULT polymorphism in disease susceptibility. This review aims to provide a summary of our present understanding of the function of human cytosolic sulfotransferases.
Resumo:
Solar Cities Congress 2008 “Energising Sustainable Communities – Options for Our Future” THEME 3: Climate Change. Impact on Society and Culture. Sub Theme: planning and implementing holistic strategies for sustainable transport Abstract Promoting the use of cycling as an environmentally and socially sustainable form of transport. We need to reduce carbon emissions. We need to reduce fuel consumption. We need to reduce pollution. We need to reduce traffic congestion. As obesity levels and associated health problems in the developed nations continue to increase we need to adopt a healthier lifestyle. Few if any would argue with these statements. In fact many would consider these problems to be amongst the most urgent that our society faces. What if we had a vehicle that uses no fossil fuel to power it, creates no pollution, takes up far less space on the roads and promotes an active, healthy lifestyle. What if this machine would have energy efficiency levels 50 times greater than the car? This is a solution that is here, now and ready to go and many of us already own one. It is the humble bicycle. Although bicycle sales in Australia now outnumber car sales, bicycle use as a form of transport (as opposed to recreation) only constitutes around 3% to 4% of all trips. So, why are bicycles the forgotten form of transport if they promise to deliver the benefits that I have just outlined? This paper examines the underlying reasons for the relatively low use of bicycles as a means of transport. It identifies the areas of greatest potential for encouraging the use of the world’s most efficient form of transport. Tim Williams - May 2007
Resumo:
Total cross sections for neutron scattering from nuclei, with energies ranging from 10 to 600 MeV and from many nuclei spanning the mass range 6Li to 238U, have been analyzed using a simple, three-parameter, functional form. The calculated cross sections are compared with results obtained by using microscopic (g-folding) optical potentials as well as with experimental data. The functional form reproduces those total cross sections very well. When allowance is made for Ramsauer-like effects in the scattering, the parameters of the functional form required vary smoothly with energy and target mass. They too can be represented by functions of energy and mass.
Resumo:
"By understanding how places have evolved, we are better able to guide development and change in the urban fabric and avoid the incongruity created by so much of the modern environment" (MacCormac, R (1996), An anatomy of London, Built Environment, Dec 1996 This paper proposes a theory on the relevance of mapping the evolutionary aspects of historical urban form in order to develop a measure of evaluating architectural elements within urban forms, through to deriving parameters for new buildings. By adopting Conzen's identification of the tripartite division of urban form; the consonance inurban form of a particular palce resides in the elements and measurable values tha makeup the fine grain aggregates of urban form. The paper will demonstrate throughthe case study of Brisbane in Australia, a method of conveying these essential components that constitute a cities continuity of form and active usage. By presenting the past as a repository of urban form characteristics, it is argued that concise architectural responses that stem from such knowledge should result in an engaged urban landscape. The essential proposition is that urban morphology is a missing constituent in the process of urban design, and that the approach of the geographical discipline to the study of urban morphology holds the key to providing the evidence of urban growth characteristics, and this methodology suggests possibilities for an architectural approach that can comprehensively determine qualitative aspects of urban buildings. The relevance of this research lies in a potential to breach the limitations of current urban analysis whilst continuing the evolving currency of urban morphology as an integral practice in the design of our cities.