974 resultados para Forced convection
Resumo:
The steady-state heat transfer in laminar flow of liquid egg yolk - an important pseudoplastic fluid food - in circular and concentric annular ducts was experimentally investigated. The average convection heat transfer coefficients, determined by measuring temperatures before and after heating sections with constant temperatures at the tube wall, were used to obtain simple new empirical expressions to estimate the Nusselt numbers for fully established flows at the thermal entrance of the considered geometries. The comparisons with existing correlations for Newtonian and non-Newtonian fluids resulted in excellent agreement. The main contribution of this work is to supply practical and easily applicable correlations, which are, especially for the case of annulus, rather scarce and extensively required in the design of heat transfer operations dealing with similar shear-thinning products. In addition, the experimental results may support existing theoretical analyses.
Resumo:
We investigate analytically the first and the second law characteristics of fully developed forced convection inside a porous-saturated duct of rectangular cross-section. The Darcy-Brinkman flow model is employed. Three different types of thermal boundary conditions are examined. Expressions for the Nusselt number, the Bejan number, and the dimensionless entropy generation rate are presented in terms of the system parameters. The conclusions of this analytical study will make it possible to compare, evaluate, and optimize alternative rectangular duct design options in terms of heat transfer, pressure drop, and entropy generation. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A theoretical analysis is presented to investigate fully developed (both thermally and hydrodynamically) forced convection in a duct of rectangular cross-section filled with a hyper-porous medium. The Darcy-Brinkman model for flow through porous media was adopted in the present analysis. A Fourier series type solution is applied to obtain the exact velocity and temperature distribution within the duct. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford [1], is treated. Values of the Nusselt number and the friction factor as a function of the aspect ratio, the Darcy number, and the viscosity ratio are reported.
Resumo:
A numerical study is reported to investigate both the First and the Second Law of Thermodynamics for thermally developing forced convection in a circular tube filled by a saturated porous medium, with uniform wall temperature, and with the effects of viscous dissipation included. A theoretical analysis is also presented to study the problem for the asymptotic region applying the perturbation solution of the Brinkman momentum equation reported by Hooman and Kani [1]. Expressions are reported for the temperature profile, the Nusselt number, the Bejan number, and the dimensionless entropy generation rate in the asymptotic region. Numerical results are found to be in good agreement with theoretical counterparts.
Resumo:
The Extended Weighted Residuals Method (EWRM) is applied to investigate the effects of viscous dissipation on the thermal development of forced convection in a porous-saturated duct of rectangular cross-section with isothermal boundary condition. The Brinkman flow model is employed for determination of the velocity field. The temperature in the flow field was computed by utilizing the Green’s function solution based on the EWRM. Following the computation of the temperature field, expressions are presented for the local Nusselt number and the bulk temperature as a function of the dimensionless longitudinal coordinate. In addition to the aspect ratio, the other parameters included in this computation are the Darcy number, viscosity ratio, and the Brinkman number.
Resumo:
Forced convection with viscous dissipation in a parallel plate channel filled by a saturated porous medium is investigated numerically. Three different viscous dissipation models are examined. Two different sets of wall conditions are considered: isothermal and isoflux. Analytical expressions are also presented for the asymptotic temperature profile and the asymptotic Nusselt number. With isothermal walls, the Brinkman number significantly influences the developing Nusselt number but not the asymptotic one. At constant wall heat flux, both the developing and the asymptotic Nusselt numbers are affected by the value of the Brinkman number. The Nusselt number is sensitive to the porous medium shape factor under all conditions considered.
Resumo:
Forced convection with viscous dissipation in a parallel plate channel filled by a saturated porous medium is investigated numerically. Three different viscous dissipation models are examined. Two different sets of wall conditions are considered: isothermal and isoflux. Analytical expressions are also presented for the asymptotic temperature profile and the asymptotic Nusselt number. With isothermal walls, the Brinkman number significantly influences the developing Nusselt number but not the asymptotic one. At constant wall heat flux, both the developing and the asymptotic Nusselt numbers are affected by the value of the Brinkman number. The Nusselt number is sensitive to the porous medium shape factor under all conditions considered.
Resumo:
Heat transfer and entropy generation analysis of the thermally developing forced convection in a porous-saturated duct of rectangular cross-section, with walls maintained at a constant and uniform heat flux, is investigated based on the Brinkman flow model. The classical Galerkin method is used to obtain the fully developed velocity distribution. To solve the thermal energy equation, with the effects of viscous dissipation being included, the Extended Weighted Residuals Method (EWRM) is applied. The local (three dimensional) temperature field is solved by utilizing the Green’s function solution based on the EWRM where symbolic algebra is being used for convenience in presentation. Following the computation of the temperature field, expressions are presented for the local Nusselt number and the bulk temperature as a function of the dimensionless longitudinal coordinate, the aspect ratio, the Darcy number, the viscosity ratio, and the Brinkman number. With the velocity and temperature field being determined, the Second Law (of Thermodynamics) aspect of the problem is also investigated. Approximate closed form solutions are also presented for two limiting cases of MDa values. It is observed that decreasing the aspect ratio and MDa values increases the entropy generation rate.
Resumo:
Kaksifaasivirtauksen kuvaamiseen käytettävät mallit, ja menetelmät kaksifaasivirtauksen painehäviön määrittämiseksi kehittyvät yhä monimutkaisimmiksi. Höyrystinputkissa tapahtuvien painehäviöiden arvioinnin vaatiman laskennan suorittamiseksi tietokoneohjelman kehittäminen on välttämätöntä. Tässä työssä on kehitetty itsenäinen PC-ohjelma painehäviöiden arvioimiseksi pakotetulle konvektiovirtaukselle pystysuorissa höyrykattilan höyrystinputkissa. Veden ja vesihöyryn aineominaisuuksien laskentaan käytetään IAPWS-IF97 –yhtälökokoelmaa sekä muita tarvittavia IAPWS:n suosittelemia yhtälöitä. Höyrystinputkessa kulloinkin vallitsevan virtausmuodon määrittämiseen käytetään sovelluskelpoisia virtausmuotojen välisiä rajoja kuvaavia yhtälöitä. Ohjelmassa käytetään painehäviön määritykseen kirjallisuudessa julkaistuja yhtälöitä, virtausmuodosta riippuen, alijäähtyneelle virtaukselle, kupla-, tulppa- ja rengasvirtaukselle sekä tulistetun höyryn virtaukselle. Ohjelman laskemia painehäviöarvioita verrattiin kirjallisuudesta valittuihin mittaustuloksiin. Laskettujen painehäviöiden virhe vaihteli välillä –19.5 ja +23.9 %. Virheiden itseisarvojen keskiarvo oli 12.8 %.
Resumo:
The steady-state heat transfer in laminar flow of liquid egg yolk - an important pseudoplastic fluid food - in circular and concentric annular ducts was experimentally investigated. The average convection heat transfer coefficients, determined by measuring temperatures before and after heating sections with constant temperatures at the tube wall, were used to obtain simple new empirical expressions to estimate the Nusselt numbers for fully established flows at the thermal entrance of the considered geometries. The comparisons with existing correlations for Newtonian and non-Newtonian fluids resulted in excellent agreement. The main contribution of this work is to supply practical and easily applicable correlations, which are, especially for the case of annulus, rather scarce and extensively required in the design of heat transfer operations dealing with similar shear-thinning products. In addition, the experimental results may support existing theoretical analyses.
Resumo:
This study investigates the utilisation of a simplified model in the transient analysis of a thermal cooling process. In such process the external thermal resistance between the surface and the surroundings is high compared to the system internal thermal resistance, so that the first controls the heat transfer process. In this case the Biot number is lower than 0.1. Aluminium reels were utilised, which, with proper internal instrumentation, furnished experimental results for the thermal cooling process. Based on experimental data, a simplified model for the determination of the process film coefficient was used. Subsequently, experimental and theoretical results were compared. The change of the airflow direction was also investigated for the cooling process, aiming at process time optimisation. (C) 2001 Elsevier B.V. Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this manuscript we investigated experimentally the steady-state heat transfer to an important pseudoplastic fluid food, the soursop juice, flowing in laminar regime through circular and concentric annular ducts. The mean convection heat transfer coefficients, determined by measuring the bulk temperatures before and after the heating sections with constant temperatures of the tube walls, were used to correlate simple new empiric expressions to estimate the average Nusselt number in the thermal entrance of the considered geometries. In addition, the thermophysical properties of the tested fluid food, as well as the rheological behavior, being essential for the heat transfer analyses, were experimentally determined. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this article we examine an inverse heat convection problem of estimating unknown parameters of a parameterized variable boundary heat flux. The physical problem is a hydrodynamically developed, thermally developing, three-dimensional steady state laminar flow of a Newtonian fluid inside a circular sector duct, insulated in the flat walls and subject to unknown wall heat flux at the curved wall. Results are presented for polynomial and sinusoidal trial functions, and the unknown parameters as well as surface heat fluxes are determined. Depending on the nature of the flow, on the position of experimental points the inverse problem sometimes could not be solved. Therefore, an identification condition is defined to specify a condition under which the inverse problem can be solved. Once the parameters have been computed it is possible to obtain the statistical significance of the inverse problem solution. Therefore, approximate confidence bounds based on standard statistical linear procedure, for the estimated parameters, are analyzed and presented.
Resumo:
Laminar-forced convection inside tubes of various cross-section shapes is of interest in the design of a low Reynolds number heat exchanger apparatus. Heat transfer to thermally developing, hydrodynamically developed forced convection inside tubes of simple geometries such as a circular tube, parallel plate, or annular duct has been well studied in the literature and documented in various books, but for elliptical duct there are not much work done. The main assumptions used in this work are a non-Newtonian fluid, laminar flow, constant physical properties, and negligible axial heat diffusion (high Peclet number). Most of the previous research in elliptical ducts deal mainly with aspects of fully developed laminar flow forced convection, such as velocity profile, maximum velocity, pressure drop, and heat transfer quantities. In this work, we examine heat transfer in a hydrodynamically developed, thermally developing laminar forced convection flow of fluid inside an elliptical tube under a second kind of a boundary condition. To solve the thermally developing problem, we use the generalized integral transform technique (GITT), also known as Sturm-Liouville transform. Actually, such an integral transform is a generalization of the finite Fourier transform, where the sine and cosine functions are replaced by more general sets of orthogonal functions. The axes are algebraically transformed from the Cartesian coordinate system to the elliptical coordinate system in order to avoid the irregular shape of the elliptical duct wall. The GITT is then applied to transform and solve the problem and to obtain the once unknown temperature field. Afterward, it is possible to compute and present the quantities of practical interest, such as the bulk fluid temperature, the local Nusselt number, and the average Nusselt number for various cross-section aspect ratios.