9 resultados para Flindersia Brayleyana


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 67-year-old plantation of Flindersia brayleyana F. Muell. in the wet tropics of north-cast Queensland had developed with minimal management. Before thinning, the stand had a canopy stem density of 770 stems ha(-1) of which 564 were F brayleyana, a stand basal area of 78 m(2) ha(-1), a mean stem diameter at breast height (dbh) of 36 cm, and a mean dbh increment of 5.2 mm year(-1) over the life of the plantation and 0.5 mm year I at the time of thinning. Sixty-three percent of the trees had crown ratios (crown diameter determined from foliage projected area: dbh) of less than 12. Thinning treatments removed 57% of the canopy stems and 45% of the stand basal area. Mean dbh increment over 2.5 years after thinning on basaltic soil was 5.8 +/- 0.3 mm year(-1), but for trees with crown ratio

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seven hardwood species were tested as underplants under Pinus elliottii plantations on the coastal lowlands of south-east Queensland. The species tested were: Flindersia brayleyana (F. Muell) (Queensland maple), F. australis (R. Br.), (crow's ash), Swietenia macrophylla (King) (American mahogany), Grevillea robusta (A. cunn) (southern silky oak), Elaeocarpus grandis (F. Muell) (silver quandong), F. ifflaiana (F. Meull) (Cairns hickory) and Ceratopetalum apetalum (D. Don) (coachwood). Most species (except E. grandis) established successfully but slowly. Underplants suffered 9-16% mortality during thinning of the overstorey. By 2004 when aged c. 38 years, four underplanted species; F. brayleyana, S. macrophylla, F. ifflaiana and E. grandis, had attained predominant heights of 20 m and mean diameter at breast height of 25 cm or better. The presence of underplants increased total site productivity by up to 23% and did not have any detrimental effect on the development of the overwood.This experiment has demonstrated that some rainforest species will survive and grow healthily as underplants in exotic pine plantations plus produce small merchantable logs within a 38 year rotation. The results also indicated the importance of correct species selection if an underplanting option is to be pursued as some species have been a complete failure (notably G. robusta).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An understanding of growth and photosynthetic potential of subtropical rainforest species to variations in light environment can be useful for determining the sequence of species introductions in rainforest restoration projects and mixed species plantations. We examined the growth and physiology of six Australian subtropical rainforest tree species in a greenhouse consisting of three artificial light environments (10%, 30%, and 60% full sunlight). Morphological responses followed the typical sun-shade dichotomy, with early and late secondary species (Elaeocarpus grandis, Flindersia brayleyana, Flindersia schottiana, and Gmelina leichhardtii) displaying higher relative growth rate (RGR) compared to mature stage species (Cryptocarya erythroxyion and Heritiera trifoliolatum). Growth and photosynthetic performance of most species reached a maximum in 30-60% full sunlight. Physiological responses provided limited evidence of a distinct dichotomy between early and late successional species. E. grandis and F brayleyana, provided a clear representation of early successional species, with marked increase in Am in high light and an ability to down regulate photosynthetic machinery in low light conditions. The remaining species (F. schottiana, G. leichhardtii, and H. trifoliolatum) were better represented as failing along a shade-tolerant continuum, with limited ability to adjust physiologically to an increase or decrease in light, maintaining similar A(max) across all light environments. Results show that most species belong to a shade-tolerant constituency, with an ability to grow and persist across a wide range of light environments. The species offer a wide range of potential planting scenarios and silvicultural options, with ample potential to achieve rapid canopy closure and rainforest restoration goals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Computer modelling promises to be an important tool for analysing and predicting interactions between trees within mixed species forest plantations. This study explored the use of an individual-based mechanistic model as a predictive tool for designing mixed species plantations of Australian tropical trees. The `spatially explicit individually based-forest simulator' (SeXI-FS) modelling system was used to describe the spatial interaction of individual tree crowns within a binary mixed-species experiment. The three-dimensional model was developed and verified with field data from three forest tree species grown in tropical Australia. The model predicted the interactions within monocultures and binary mixtures of Flindersia brayleyana, Eucalyptus pellita and Elaeocarpus grandis, accounting for an average of 42% of the growth variation exhibited by species in different treatments. The model requires only structural dimensions and shade tolerance as species parameters. By modelling interactions in existing tree mixtures, the model predicted both increases and reductions in the growth of mixtures (up to +/-50% of stem volume at 7 years) compared to monocultures. This modelling approach may be useful for designing mixed tree plantations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mixed species plantations using native trees are increasingly being considered for sustainable timber production. Successful application of mixed species forestry systems requires knowledge of the potential spatial interaction between species in order to minimise the chance of dominance and suppression and to maximise wood production. Here, we examined species performances across 52 experimental plots of tree mixtures established on cleared rainforest land to analyse relationships between the growth of component species and climate and soil conditions. We derived site index (SI) equations for ten priority species to evaluate performance and site preferences. Variation in SI of focus species demonstrated that there are strong species-specific responses to climate and soil variables. The best predictor of tree growth for rainforest species Elaeocarpus grandis and Flindersia brayleyana was soil type, as trees grew significantly better on well-draining than on poorly drained soil profiles. Both E. grandis and Eucalyptus pellita showed strong growth response to variation in mean rain days per month. Our study generates understanding of the relative performance of species in mixed species plantations in the Wet Tropics of Australia and improves our ability to predict species growth compatibilities at potential planting sites within the region. Given appropriate species selections and plantation design, mixed plantations of high-value native timber species are capable of sustaining relatively high productivity at a range of sites up to age 10 years, and may offer a feasible approach for large-scale reforestation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monoculture plantations of Pinus, Eucalyptus and Acacia have been established oil rainforest lands throughout the world. However, this type of reforestation generally supplies low quality timber and contributes to landscape simplification. Alternatives to exotic monoculture plantations are now beginning to gain momentum with farmers and landholders attempting to establish a variety of rainforest trees in small plantations. When compared to the well studied commercial species, knowledge concerning the growth and management of many of these rainforest species is in its infancy. To help expand this limited knowledge base an experimental plantation of 16 rainforest tree species in a randomised design was established near Mt. Mee, in south-eastern Queensland, Australia. Changes in growth, form (based on stem straightness, branch size and branchiness), crown diameters and leaf area of each species were examined over 5 years. Patterns of height growth were also measured monthly for 31 months. Species in this trial could be separated into three groups based on their overall growth after 5 years and their growth patterns. Early successional status, low timber density, high maximum photosynthetic rates and large total leaf areas were generally correlated to rapid height growth. Several species (including Araucaria cunninghamii, Elaeocarpus grandis, Flindersia brayleyana, Grevillea robusta and Khaya nyasica) had above average form and growth, while all species in the trial had considerable potential to have increased productivity through tree selection. As canopy closure occurred at the site between years four and five, growth increments declined. To reduce stand competition a number of different thinning techniques could be employed. However, simple geometric or productivity based thinnings appear to be inappropriate management techniques for this mixed species stand as they would either remove many of the best performing trees or nearly half the species in the trial. Alternatively, a form based thinning would maintain the site's diversity, increase the average form of the plantation and provide some productivity benefits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Computer modelling promises to. be an important tool for analysing and predicting interactions between trees within mixed species forest plantations. This study explored the use of an individual-based mechanistic model as a predictive tool for designing mixed species plantations of Australian tropical trees. The 'spatially explicit individually based-forest simulator' (SeXI-FS) modelling system was used to describe the spatial interaction of individual tree crowns within a binary mixed-species experiment. The three-dimensional model was developed and verified with field data from three forest tree species grown in tropical Australia. The model predicted the interactions within monocultures and binary mixtures of Flindersia brayleyana, Eucalyptus pellita and Elaeocarpus grandis, accounting for an average of 42% of the growth variation exhibited by species in different treatments. The model requires only structural dimensions and shade tolerance as species parameters. By modelling interactions in existing tree mixtures, the model predicted both increases and reductions in the growth of mixtures (up to +/- 50% of stem volume at 7 years) compared to monocultures. This modelling approach may be useful for designing mixed tree plantations. (c) 2006 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dichloromethane extract from taproots of Hortia oreadica afforded six limonoids, these are 9,11-dehydro-12 alpha-acetoxyhortiolide A, hortiolide C, 11 alpha-acetoxy-15-deoxy-6-hydroxyhortiolide C, hortiolide D, hortiolide E, 12 beta-hydroxyhortiolide E, in addition to the known limonoid, guyanin. The dichloromethane extract from stems of H. oreadica also afforded two limonoids 9,11-dehydro12 alpha-hydroxyhortiolide A and 6-hydroxyhortiolide C. As a result of this study and literature data, Hortia has been shown to produce highly specialized limonoids that are similar to those from the Flindersia (Flindersioideae). The taxonomy of Hortia has been debatable, with most authors placing it in the Toddalioideae. Considering the complexity of the isolated limonoids, Hortia does not show any close affinity to the genera of Toddalioideae. That is, the limonoids appear to be of little value in resolving the taxonomic situation of Hortia. (C) 2012 Elsevier Ltd. All rights reserved.