1000 resultados para Fisica della materia
Resumo:
Da numerose osservazioni astronomiche e cosmologiche si ipotizza che la Materia Oscura rappresenti gran parte della massa dell’Universo. La Materia Oscura ha la particolarita` di interagire solo gravitazionalmente o debolmente e si presenta come massiva e neutra. Tra i vari candidati al ruolo di particelle di Materia Oscura troviamo le WIMP (Weakly Interacting Massive Particles). Un’esperimento che si propone di rivelare in modo diretto le WIMP, mediante la loro diffusione elastica su nuclei di Xeno, `e il progetto XENON presso i Laboratori Nazionali del Gran Sasso. Le tecniche di rivelazione diretta prevedono l’utilizzo di rivelatori grandi, in questo caso a gas nobile, ultra puri e situati in ambienti a bassa radioattivita` per diminuire il rumore di fondo come ad esempio i neutroni indotti dai muoni provenienti dai raggi cosmici (laboratori sotterranei). A causa della sezione d’urto molto piccola necessario raggiungere basse energie di soglia. A tal proposito sono in fase di ricerca e sviluppo soluzioni che permettano di migliorare le prestazioni del rivelatore; ad esempio sono in fase di studio soluzioni tecnologiche che migliorino la raccolta di luce. Una di queste prevede l’utilizzo di foto rivelatori tipo SiPM da affiancare a normali PMT. Tali rivelatori devono essere in grado di funzionare a basse temperature (circa −100◦ C) e devono poter rivelare fotoni di lunghezza d’onda di 178 nm. Il mio lavoro di tesi si colloca nell’ambito di tale progetto di ricerca e sviluppo. Lo scopo di questo lavoro `e stato infatti la preparazione di un setup sperimentale per caratterizzare in aria fotorivelatori SiPM Hamamatsu (prototipo codice S12574) in grado di lavorare in Xeno liquido. Oltre all’installazione del setup mi sono occupato di scrivere un programma in C++ in grado di analizzare le forme d’onda acquisite in run preliminari e di misurare guadagno e dark count rate del rivelatore.
Resumo:
La Degenerazione è un determinato stato della materia causato da particolari condizioni di temperatura e densità. E' un fenomeno che è necessario valutare quando la fisica che descrive un sistema non può fare a meno di considerare la trattazione quantistica per caratterizzare le sue proprietà. Proprio per questo motivo è necessario abbandonare l'approccio deterministico della Meccanica Classica e abbracciare quello probabilistico della Meccanica Quantistica, che vede le particelle dividersi in due categorie: Fermioni e Bosoni. Per entrambe le specie, la materia, mediante specifiche condizioni, può dunque ritrovarsi ad essere in uno stato degenere, presentando diversi fenomeni a seconda della tipologia di particelle che compongono un gas in analisi. Tale fisica della materia degenere, in particolare dei Fermioni degeneri, ha importanti applicazioni nel campo dell'astrofisica: il regime che domina il comportamento del gas interno ad una struttura stellare determina completamente lo sviluppo della sua evoluzione, per via dei differenti contributi di pressione che ogni stato apporta al sostenimento di questi corpi celesti. La degenerazione della materia riveste un ruolo fondamentale anche negli stadi evolutivi finali delle stelle: é il caso delle Nane Bianche e delle Stelle di Neutroni, nelle quali la sola pressione di degenerazione fermionica, entro certi limiti, contrasta la pressione gravitazionale che guida la loro contrazione, mantenendo così l'Equilibrio Idrostatico di queste strutture stellari.
Resumo:
Numérisation partielle de reliure
Resumo:
Una stella non è un sistema in "vero" equilibrio termodinamico: perde costantemente energia, non ha una composizione chimica costante nel tempo e non ha nemmeno una temperatura uniforme. Ma, in realtà, i processi atomici e sub-atomici avvengono in tempi così brevi, rispetto ai tempi caratteristici dell'evoluzione stellare, da potersi considerare sempre in equilibrio. Le reazioni termonucleari, invece, avvengono su tempi scala molto lunghi, confrontabili persino con i tempi di evoluzione stellare. Inoltre il gradiente di temperatura è dell'ordine di 1e-4 K/cm e il libero cammino medio di un fotone è circa di 1 cm, il che ci permette di assumere che ogni strato della stella sia uno strato adiabatico a temperatura uniforme. Di conseguenza lo stato della materia negli interni stellari è in una condizione di ``quasi'' equilibrio termodinamico, cosa che ci permette di descrivere la materia attraverso le leggi della Meccanica Statistica. In particolare lo stato dei fotoni è descritto dalla Statistica di Bose-Einstein, la quale conduce alla Legge di Planck; lo stato del gas di ioni ed elettroni non degeneri è descritto dalla Statistica di Maxwell-Boltzmann; e, nel caso di degenerazione, lo stato degli elettroni è descritto dalla Statistica di Fermi-Dirac. Nella forma più generale, l'equazione di stato dipende dalla somma dei contributi appena citati (radiazione, gas e degenerazione). Vedremo prima questi contributi singolarmente, e dopo li confronteremo tra loro, ottenendo delle relazioni che permettono di determinare quale legge descrive lo stato fisico di un plasma stellare, semplicemente conoscendone temperatura e densità. Rappresentando queste condizioni su un piano $\log \rho \-- \log T$ possiamo descrivere lo stato del nucleo stellare come un punto, e vedere in che stato è la materia al suo interno, a seconda della zona del piano in cui ricade. È anche possibile seguire tutta l'evoluzione della stella tracciando una linea che mostra come cambia lo stato della materia nucleare nelle diverse fasi evolutive. Infine vedremo come leggi quantistiche che operano su scala atomica e sub-atomica siano in grado di influenzare l'evoluzione di sistemi enormi come quelli stellari: infatti la degenerazione elettronica conduce ad una massa limite per oggetti completamente degeneri (in particolare per le nane bianche) detta Massa di Chandrasekhar.
Resumo:
Lo stretch film è una diffusa applicazione per imballaggio dei film in polietilene (PE), utilizzato per proteggere diversi prodotti di vari dimensioni e pesi. Una caratteristica fondamentale del film è la sua proprietà adesiva in virtù della quale il film può essere facilmente chiuso su se stesso. Tipicamente vengono scelti gradi lineari a bassa densità (LLDPE) con valori relativamente bassi di densità a causa delle loro buone prestazioni. Il mercato basa la scelta del materiale adesivo per tentativi piuttosto che in base alla conoscenza delle caratteristiche strutturali ottimali per l’applicazione. Come per i pressure sensitive adhesives, le proprietà adesive di film stretch in PE possono essere misurati mediante "peel testing". Esistono molti metodi standard internazionali ma i risultati di tali prove sono fortemente dipendenti dalla geometria di prova, sulla possibile deformazione plastica che si verificano nel peel arm(s), e la velocità e temperatura. Lo scopo del presente lavoro è quello di misurare l'energia di adesione Gc di film stretch di PE, su se stessi e su substrati diversi, sfruttando l'interpretazione della meccanica della frattura per tener conto dell'elevata flessibilità e deformabilità di tali film. Quindi, la dipendenza velocità/temperatura di Gc sarà studiata con riferimento diretto al comportamento viscoelastico lineare dei materiali utilizzati negli strati adesivi, per esplorare le relazioni struttura-proprietà che possono mettere in luce i meccanismi molecolari coinvolti nei processi di adesione e distacco. Nella presente caso, l’adesivo non è direttamente disponibile come materiale separato che può essere messo tra due superfici di prova e misurato per la determinazione delle sue proprietà. Il presupposto principale è che una parte, o fase, della complessa struttura semi-cristallina del PE possa funzionare come adesivo, e un importante risultato di questo studio può essere una migliore identificazione e caratterizzazione di questo "fase adesiva".
Resumo:
Ruolo della fisica della matrice extracellulare nello sviluppo del tumore
Resumo:
Il continuo sviluppo negli ultimi anni di diverse declinazioni della spettroscopia d'assorbimento a raggi X (XAS) con radiazione di sincrotrone ha permesso la determinazione della struttura locale di campioni di ogni tipo, dagli elementi puri, ai più moderni materiali, indagando e approfondendo la conoscenza di quei meccanismi che conferiscono a questi ultimi delle proprietà innovative e, a volte, rivoluzionarie. Il vantaggio di questa tecnica è quello di poter ottenere informazioni sulla struttura del campione soprattutto a livello locale, rendendo relativamente agevole l'analisi di sistemi senza ordine a lungo raggio, quali per esempio i film molecolari. Nell'elaborato verrà preliminarmente illustrata la fenomenologia della XAS e l’interpretazione teorica dell'origine della struttura fine. Saranno successivamente descritte le innovative tecniche di misura che permettono di studiare i cambiamenti della struttura locale indotti dall'illuminazione con luce visibile, inclusi gli esperimenti di tipo pump probe. Un capitolo della tesi è interamente dedicato alla descrizione dei campioni studiati, di cui sono stati analizzati alcuni dati acquisiti in condizioni statiche. Quest'analisi è stata compiuta sfruttando anche dei cammini di multiplo scattering dedicando particolare attenzione alla trattazione del fattore di Debye Waller. Nella parte principale della tesi verranno descritti la progettazione ed il test di un apparato sperimentale per l'acquisizione di spettri differenziali da utilizzare alla beamline BM08 dell'European Synchrotron Radiation Facility di Grenoble. Saranno presentate principalmente le modifiche apportate al software d'acquisizione della linea e la progettazione di un sistema ottico d'eccitazione da montare nella camera sperimentale. Nella fase di studio dell'ottica è stato creato in LabView un simulatore basato sul metodo Monte Carlo, capace di prevedere il comportamento del sistema di lenti.
Resumo:
L'utilizzo dell'idrogeno come vettore energetico è uno dei temi, riguardanti la sostenibilità energetica, di maggior rilievo degli ultimi anni. Tuttavia ad oggi è ancora in corso la ricerca di un sistema che ne permetta un immagazzinamento efficiente. Il MgH2 costituisce un valido candidato per la produzione di sistemi per lo stoccaggio di idrogeno allo stato solido. In questa tesi, per migliorare le proprietà cinetiche e termodinamiche di cui questo sistema, sono stati sintetizzati dei campioni nanostrutturati composti da Mg-Ti attraverso la tecnica Inert Gas Condensation. I campioni così ottenuti sono stati analizzati dal punto di vista morfologico e composizionale, mediante la microscopia elettronica a scansione, la microanalisi e la diffrazione di raggi X. Tali analisi hanno mostrato che le dimensioni delle nanoparticelle sono comprese tra i 10-30 nm e che la tecnica IGC permette una distribuzione uniforme del titanio all'interno della matrice Mg. Le misure di caratterizzazione per l'assorbimento reversibile di idrogeno sono state effettuate attraverso il metodo volumetrico, Sievert. I campioni sono stati analizzati a varie temperature (473K-573K). Cineticamente la presenza di titanio ha provocato un aumento della velocità delle cinetiche sia per i processi di desorbimento che per quelli di assorbimento ed ha contribuito ad una diminuzione consistente delle energie di attivazione di entrambi i processi rispetto a quelle note in letteratura per il composto MgH2. Dal punto di vista termodinamico, sia le pressioni di equilibrio ottenute dalle analisi PCT a diverse temperature, che l'entalpia e l'entropia di formazione risultano essere in accordo con i valori conosciuti per il sistema MgH2. All'interno di questo lavoro di tesi è inoltre presentata un'analisi preliminare di un campione analizzato con la tecnica Synchrotron Radiation-Powder X Ray Diffraction in situ, presso la facility MAX-lab (Svezia), all’interno dell’azione COST, MP1103 per la ricerca di sistemi per lo stoccaggio di idrogeno allo stato solido.
Resumo:
La capacità della spettroscopia di assorbimento di riuscire a determinare la struttura locale di campioni di ogni tipo e concentrazione, dagli elementi puri ai più moderni materiali nanostrutturati, rende lo studio dei meccanismi di incorporazione di droganti in matrici di semiconduttori il campo che meglio ne esprime tutto il potenziale. Inoltre la possibilità di ottenere informazioni sulla struttura locale di un particolare elemento in traccia posto in sistemi senza ordine a lungo raggio risulta, ovviamente, nello studio dei semiconduttori di grandissimo interesse. Tuttavia, la complessità di determinate strutture, generate dalla incorporazione di elementi eterovalenti che ne modificano la simmetria, può far si che all’analisi sperimentale si debbano affiancare dei metodi avanzati ab-initio. Questi approcci garantiscono, attraverso la simulazione o di strutture atomiche o dello stesso spettro XAS, di ottenere una più completa e precisa interpretazione dei dati sperimentali. Nella fase preliminare di questo elaborato si illustrerà la fenomenologia della spettroscopia di assorbimento e i fondamenti teorici che stanno alla base dell’analisi della struttura fine di soglia. Si introdurranno contemporaneamente le tecniche sperimentali con cui si realizzano le misure di spettri di assorbimento su una beamline che sfrutta sorgente di radiazione di sincrotrone facendo riferimento agli strumenti montati sulla linea LISA (o BM08) presso l’European Synchrotron Radiation Facility di Grenoble su cui si sono realizzati gli esperimenti di questo lavoro. Successivamente si realizzerà una rassegna di alcuni esperimenti simbolo della analisi della struttura locale di droganti in semiconduttori mediante XAFS, andando ad approfondire i metodi sperimentali associati. Nella parte principale della tesi verranno descritti alcuni tipi di analisi avanzate effettuate su Colloidal Quantum Dots a base di solfuro di piombo drogati con antimonio. Tali sistemi, particolarmente interessanti per potenziali applicazioni in campo optoelettrico, sono stati analizzati mediante misure di fluorescenza ottenute sulla beamline LISA. La fase di analisi ha visto la progettazione di una suite di programmi in C++ per realizzare simulazioni di uno spettro XAS teorico completo basato su strutture ottenute (anche esse) da metodi ab-initio.
Resumo:
Mode of access: Internet.
Resumo:
La tesi si occupa della rigenerazione urbana, ambientale e architettonica dell’attuale piazza Garibaldi, partendo dal progetto di Alberto Burri per la stessa area. Con occhio critico la proposta del maestro viene sviscerata e approfondita per poi portare con sé un progetto di rigenerazione del sistema urbano. Nonostante le splendide e monumentali architetture, e seppur essendo uno dei grandi accessi alla città storica, l’area ha perso la sua centralità a causa di vari mutamenti urbanistici effettuati nel corso del tempo. In seguito ad una analisi storica e percettiva, è stata proposta la riprogettazione dell’area consapevolmente alla sua storia e alle necessità odierne. Il progetto si pone l’obiettivo di donare alla città un nuovo spazio dedicato al grande artista e aprire quest’ultima verso l’esterno con un nuovo degno accesso. Il progetto quindi prevede la progettazione di una piazza, Piazza Burri, con un giardino adiacente, il Giardino delle Sculture, e un centro culturale e artistico, al Fondazione Alveare. La proposta progettuale si collega agli altri spazi espositivi della città promuovendo così una rete di collegamento che riaccenda l’area, e Città di Castello, dal punto di vista dell’attrattività.
Resumo:
Le equazioni di stato (EdS) sono relazioni che permettono di descrivere sistemi termodinamici all'equilibrio. Un esempio di questi sistemi sono i gas, che si possono dividere in gas perfetti e gas degeneri, che differiscono per importanti proprietà e caratteristiche fisiche. Le proprietà dei gas degeneri cambiano in base al tipo di particelle che li compongono, il comportamento di un gas degenere di Fermioni è molto diverso da quello di un gas degenere di Bosoni. Per lo studio e la descrizione dei gas degeneri di Fermioni entrano in gioco il principio di esclusione di Pauli ed il principio di inderteminazione di Heisenberg. Attraverso le EdS si possono descrivere gli interni stellari poiché per via delle alte temperature le stelle sono formate da gas completamente ionizzato. La pressione all'interno di una stella è data dalla somma tra la pressione di radiazione, la pressione elettronica e la pressione ionica, in base al tipo di gas elettronico che si ha ed alla temperatura interna la stella può essere formata da gas perfetto o gas degenere. Lo studio del regime di pressione interno per una stella si fa con il grafico densità-temperatura, in cui una stella viene rappresentata nel piano attraverso queste due grandezze. Si vede come le stelle di sequenza principale siano formate da gas perfetto mentre i corpi compatti come le nane bianche sono formati da gas completamente degenere. Attraverso le EdS ed il principio dell'equilibrio idrostatico si possono ricavare la temperatura interna per le stelle di sequenza principale e la relazione massa-raggio per le nane bianche.