988 resultados para Fire resistance rating (FRR)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the details of research undertaken on the development of an energy based time equivalent approach for light gauge steel frame (LSF) walls. This research utilized an energy based time equivalent approach to obtain the fire resistance ratings (FRR) of LSF walls exposed to realistic design fires with respect to standard fire exposure [1]. It is based on the equal area concept of fire severity and relates to the amount of energy transferred to the member. The proposed method was used to predict the fire resistance of single and double plasterboard lined and externally insulated LSF walls. The predicted fire resistance ratings were compared with the results from finite element analyses and fire design rules for three different wall configurations. This paper presents the review of the available time equivalent approaches and the development of energy based time equivalent approach for the prediction of fire resistance ratings of LSF walls exposed to realistic design fires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research at the Queensland University of Technology has investigated the structural and thermal behaviour of load bearing Light gauge Steel Frame (LSF) wall systems made of 1.15 mm G500 steel studs and varying plasterboard and insulation configurations (cavity and external insulation) using full scale fire tests. Suitable finite element models of LSF walls were then developed and validated by comparing with test results. In this study, the validated finite element models of LSF wall panels subject to standard fire conditions were used in a detailed parametric study to investigate the effects of important parameters such as steel grade and thickness, plasterboard screw spacing, plasterboard lateral restraint, insulation materials and load ratio on their performance under standard fire conditions. Suitable equations were proposed to predict the time–temperature profiles of LSF wall studs with eight different plasterboard-insulation configurations, and used in the finite element analyses. Finite element parametric studies produced extensive fire performance data for the LSF wall panels in the form of load ratio versus time and critical hot flange (failure) temperature curves for eight wall configurations. This data demonstrated the superior fire performance of externally insulated LSF wall panels made of different steel grades and thicknesses. It also led to the development of a set of equations to predict the important relationship between the load ratio and the critical hot flange temperature of LSF wall studs. Finally this paper proposes a simplified method to predict the fire resistance rating of LSF walls based on the two proposed set of equations for the load ratio–hot flange temperature and the time–temperature relationships.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural fire safety has become one of the key considerations in the design and maintenance of the built infrastructure. Conventionally the fire resistance rating of load bearing Light gauge Steel Frame (LSF) walls is determined based on the standard time-temperature curve given in ISO 834. Recent research has shown that the true fire resistance of building elements exposed to building fires can be less than their fire resistance ratings determined based on standard fire tests. It is questionable whether the standard time-temperature curve truly represents the fuel loads in modern buildings. Therefore an equivalent fire severity approach has been used in the past to obtain fire resistance rating. This is based on the performance of a structural member exposed to a realistic design fire curve in comparison to that of standard fire time-temperature curve. This paper presents the details of research undertaken to develop an energy based time equivalent approach to obtain the fire resistance ratings of LSF walls exposed to realistic design fire curves with respect to standard fire exposure. This approach relates to the amount of energy transferred to the member. The proposed method was used to predict the fire resistance ratings of single and double layer plasterboard lined and externally insulated LSF walls. The predicted fire ratings were compared with the results from finite element analyses and fire design rules for three different wall configurations exposed to both rapid and prolonged fires. The comparison shows that the proposed energy method can be used to obtain the fire resistance ratings of LSF walls in the case of prolonged fires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire resistance of load bearing Light Gauge Steel Frame (LSF) wall systems is important to protect lives and properties in fire accidents. Recent fire tests of LSF walls made of the new cold-formed and welded hollow flange channel (HFC) section studs and the commonly used lipped channel section (LCS) studs have shown the influence of stud sections on the fire resistance rating (FRR) of LSF walls. To advance the use of HFC section studs and to verify the outcomes from the fire tests, finite element models were developed to predict the structural fire performance of LSF walls made of welded HFC section studs. The developed models incorporated the measured non-uniform temperature distributions in LSF wall studs due to the exposure of standard fire on one side, and accurate elevated temperature mechanical properties of steel used in the stud sections. These models simulated the various complexities involved such as thermal bowing and neutral axis shift caused by the non-uniform temperature distribution in the studs. The finite element analysis (FEA) results agreed well with the full scale fire test results including the FRR, outer hot and cold flange temperatures at failure and axial deformation and lateral displacement profiles. They also confirmed the superior fire performance of LSF walls made of HFC section studs. The applicability of both transient and steady state FEA of LSF walls under fire conditions was verified in this study, which also investigated the effects of using various temperature distribution patterns across the cross-section of HFC section studs on the FRR of LSF walls. This paper presents the details of this numerical study and the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent fire research into the behaviour of light gauge steel frame (LSF) wall systems has devel-oped fire design rules based on Australian and European cold-formed steel design standards, AS/NZS 4600 and Eurocode 3 Part 1.3. However, these design rules are complex since the LSF wall studs are subjected to non-uniform elevated temperature distributions when the walls are exposed to fire from one side. Therefore this paper proposes an alternative design method for routine predictions of fire resistance rating of LSF walls. In this method, suitable equations are recommended first to predict the idealised stud time-temperature pro-files of eight different LSF wall configurations subject to standard fire conditions based on full scale fire test results. A new set of equations was then proposed to find the critical hot flange (failure) temperature for a giv-en load ratio for the same LSF wall configurations with varying steel grades and thickness. These equations were developed based on detailed finite element analyses that predicted the axial compression capacities and failure times of LSF wall studs subject to non-uniform temperature distributions with varying steel grades and thicknesses. This paper proposes a simple design method in which the two sets of equations developed for time-temperature profiles and critical hot flange temperatures are used to find the failure times of LSF walls. The proposed method was verified by comparing its predictions with the results from full scale fire tests and finite element analyses. This paper presents the details of this study including the finite element models of LSF wall studs, the results from relevant fire tests and finite element analyses, and the proposed equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Load bearing LSF walls are commonly made of cold-formed steel frames, gypsum plasterboards and insulation, and their fire performance is an important aspect of design. Many experimental and numerical studies have been conducted on the fire performance of LSF walls at the Queensland University of Technology (QUT). These studies have shown that increasing the number or thickness or quality of gypsum plasterboards has improved the fire resistance ratings (FRR) of LSF walls while the use of cavity insulation has reduced their FRR. Therefore new LSF wall systems with external insulation sandwiched between two layers of plasterboards were proposed, which provided higher FRR than cavity insulated walls. There are also other parameters that can improve the fire performance of LSF walls such as the steel type, stud geometry and depth, type of screw fasteners used, joints in the plasterboard and the plasterboard fall off time. This paper presents a review of the fire performance of LSF walls as a function of these parameters based on our research at QUT. Their effects on both the thermal and structural performance of LSF walls are discussed in detail and suitable improvements are recommended, for example, improved plasterboard joint types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the fire performance results of light gauge steel frame (LSF) walls lined with single and double plasterboards, and externally insulated with rock fibre insulation as obtained using a finite element analysis based parametric study. A validated numerical model was used to study the influence of various fire curves developed for a range of compartment characteristics. Data from the parametric study was utilized to develop a simplified method to predict the fire resistance ratings of LSF walls exposed to realistic design fire curves. Further, this paper also presents the details of suitable fire design rules based on current cold-formed steel standards and the modifications proposed by previous researchers. Of these the recently developed design rules by Gunalan and Mahendran [1] were investigated to determine their applicability to predict the axial compression strengths and fire resistance ratings (FRR) of LSF walls exposed to realistic design fires. Finally, the stud failure times obtained from fire design rules and finite element studies were compared for LSF walls lined with single and double plasterboards, and externally insulated with rock fibres under realistic design fire curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire safety design of buildings is essential to safeguard lives and minimize the loss of damage to properties. Light-weight cold-formed steel channel sections along with fire resistive plasterboards are used to construct light gauge steel frame floor systems to provide the required fire resistance rating. However, simply adding more plasterboard layers is not an efficient method to increase FRR. Hence this research focuses on using joists with improved joist section profiles such as hollow flange sections to increase the structural capacity of floor systems under fire conditions and thus their FRR. In this research, the structural and thermal behaviour of LSF floor systems made of LiteSteel Beams with different plasterboard and insulation configurations was investigated using four full scale tests under standard fires. Based on the ultimate failure load of the floor joist at ambient temperature, transient state fire tests were conducted for different Load Ratios. These fire tests showed that the new LSF floor system has improved the FRR well above that of those made of lipped channel sections. The joist failure was predominantly due to local buckling of LSB compression flanges near mid-span with severe yielding of tension flanges. Fire tests have provided valuable structural and thermal performance data of tested floor systems that included time-temperature profiles, and failure times and temperatures. Average failure temperatures of LSB joists and reduced yield strengths were used to predict their ultimate moment capacities, which were compared with corresponding test capacities. This allowed an assessment in relation to the accuracy of current design rules for steel joists at elevated temperatures. This paper presents the details of full scale fire tests of LSF floor systems made of LSB joists with different plasterboard and insulation configurations and their results along with some important findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire safety plays a vital role in building design because appropriate level of fire safety is important to safeguard lives and property. Cold-formed steel channel sections along with fire-resistive plasterboards are used to construct light-gauge steel frame (LSF) floor systems to provide adequate fire resistance ratings (FRR). It is common practice to use lipped channel sections (LCS) as joists in LSF floor systems, and past research has only considered such systems. This research focuses on adopting improved joist sections such as hollow flange channel (HFC) sections to improve the structural performance and FRR of cold-formed LSF floor systems under standard fire conditions. The structural and thermal performances of LSF floor systems made of a welded HFC, LiteSteel Beams (LSB), with different plasterboard and insulation configurations, were investigated using four full-scale fire tests under standard fires. These fire tests showed that the new LSF floor system with LSB joists improved the FRR in comparison to that of conventional LCS joists. Fire tests have provided valuable structural and thermal performance data of tested floor systems that included time-temperature profiles and failure times, temperatures, and modes. This paper presents the details of the fire tests conducted in this study and their results along with some important findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire design is an essential element of the overall design procedure of structural steel members and systems. Conventionally the fire rating of load-bearing stud wall systems made of light gauge steel frames (LSF) is based on approximate prescriptive methods developed on the basis of limited fire tests. This design is limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to the stud walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these light gauge steel stud wall systems. Hence a detailed fire research study into the performance and effectiveness of a recently developed innovative composite panel wall system was undertaken at Queensland University of Technology using both full scale fire tests and numerical studies. Experimental results of LSF walls using the new composite panels under axial compression load have shown the improvement in fire performance and fire resistance rating. Numerical analyses are currently being undertaken using the finite element program ABAQUS. Measured temperature profiles of the studs are used in the numerical models and the results are used to calibrate against full scale test results. The validated model will be used in a detailed parametric study with an aim to develop suitable design rules within the current cold-formed steel structures and fire design standards. This paper will present the results of experimental and numerical investigations into the structural and fire behaviour of light gauge steel stud walls protected by the new composite panel. It will demonstrate the improvements provided by the new composite panel system in comparison to traditional wall systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel stud walls are a major component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of stud wall systems while past research showed contradicting results, for example, about the benefits of cavity insulation. This research was therefore conducted to improve the knowledge and understanding of the structural and thermal performance of cold-formed steel stud wall systems (both load bearing and non-load bearing) under fire conditions and to develop new improved stud wall systems including reliable and simple methods to predict their fire resistance rating. Full scale fire tests of cold-formed steel stud wall systems formed the basis of this research. This research proposed an innovative LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating. Hence fire tests included both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. A propane fired gas furnace was specially designed and constructed first. The furnace was designed to deliver heat in accordance with the standard time temperature curve as proposed by AS 1530.4 (SA, 2005). A compression loading frame capable of loading the individual studs of a full scale steel stud wall system was also designed and built for the load-bearing tests. Fire tests included comprehensive time-temperature measurements across the thickness and along the length of all the specimens using K type thermocouples. They also included the measurements of load-deformation characteristics of stud walls until failure. The first phase of fire tests included 15 small scale fire tests of gypsum plasterboards, and composite panels using different types of insulating material of varying thickness and density. Fire performance of single and multiple layers of gypsum plasterboards was assessed including the effect of interfaces between adjacent plasterboards on the thermal performance. Effects of insulations such as glass fibre, rock fibre and cellulose fibre were also determined while the tests provided important data relating to the temperature at which the fall off of external plasterboards occurred. In the second phase, nine small scale non-load bearing wall specimens were tested to investigate the thermal performance of conventional and innovative steel stud wall systems. Effects of single and multiple layers of plasterboards with and without vertical joints were investigated. The new composite panels were seen to offer greater thermal protection to the studs in comparison to the conventional panels. In the third phase of fire tests, nine full scale load bearing wall specimens were tested to study the thermal and structural performance of the load bearing wall assemblies. A full scale test was also conducted at ambient temperature. These tests showed that the use of cavity insulation led to inferior fire performance of walls, and provided good explanations and supporting research data to overcome the incorrect industry assumptions about cavity insulation. They demonstrated that the use of insulation externally in a composite panel enhanced the thermal and structural performance of stud walls and increased their fire resistance rating significantly. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. This research also included steady state tensile tests at ambient and elevated temperatures to address the lack of reliable mechanical properties for high grade cold-formed steels at elevated temperatures. Suitable predictive equations were developed for calculating the yield strength and elastic modulus at elevated temperatures. In summary, this research has developed comprehensive experimental thermal and structural performance data for both the conventional and the proposed non-load bearing and load bearing stud wall systems under fire conditions. Idealized hot flange temperature profiles have been developed for non-insulated, cavity insulated and externally insulated load bearing wall models along with suitable equations for predicting their failure times. A graphical method has also been proposed to predict the failure times (fire rating) of non-load bearing and load bearing walls under different load ratios. The results from this research are useful to both fire researchers and engineers working in this field. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF walls under fire conditions, and developed an innovative LSF wall system with increased fire rating. It has clearly demonstrated the detrimental effects of using cavity insulation, and has paved the way for Australian building industries to develop new wall panels with increased fire rating for commercial applications worldwide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel stud walls are an important component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin-walled steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of these wall systems while past research showed contradicting results about the benefits of cavity insulation. This research proposed a new LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating of walls. Full scale fire tests were conducted using both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. Eleven full scale load bearing wall specimens were tested to study the thermal and structural performances of the load bearing wall assemblies under standard fire conditions. These tests showed that the use of cavity insulation led to inferior fire performance of walls while also providing good explanations and supporting test data to overcome the incorrect industry assumptions about cavity insulation. Tests demonstrated that the use of external insulation in a composite panel form enhanced the thermal and structural performances of stud walls and increased their fire resistance rating significantly. This paper presents the details of the full scale fire tests of load-bearing wall assemblies lined with plasterboards and different types of insulation under varying load ratios. Test results including the temperature and deflection profiles of walls measured during the fire tests will be presented along with their failure modes and failure times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel lipped channels are commonly used in LSF wall construction as load bearing studs with plasterboards on both sides. Under fire conditions, cold-formed thin-walled steel sections heat up quickly resulting in fast reduction in their strength and stiffness. Usually the LSF wall panels are subjected to fire from one side which will cause thermal bowing, neutral axis shift and magnification effects due to the development of non-uniform temperature distributions across the stud. This will induce an additional bending moment in the stud and hence the studs in LSF wall panels should be designed as a beam column considering both the applied axial compression load and the additional bending moment. Traditionally the fire resistance rating of these wall panels is based on approximate prescriptive methods. Very often they are limited to standard wall configurations used by the industry. Therefore a detailed research study is needed to develop fire design rules to predict the failure load and hence the failure time of LSF wall panels subject to non-uniform temperature distributions. This paper presents the details of an investigation to develop suitable fire design rules for LSF wall studs under non-uniform elevated temperature distributions. Applications of the previously developed fire design rules based on AISI design manual and Eurocode 3 Parts 1.2 and 1.3 to LSF wall studs were investigated in detail and new simplified fire design rules based on AS/NZS 4600 and Eurocode 3 Part 1.3 were proposed in the current study with suitable allowances for the interaction effects of compression and bending actions. The accuracy of the proposed fire design rules was verified by using the results from full scale fire tests and extensive numerical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light Gauge Steel Framing (LSF) walls made of cold-formed and thin-walled steel lipped channel studs with plasterboard linings on both sides are commonly used in commercial, industrial and residential buildings. However, there is limited data about their structural and thermal performance under fire conditions while past research showed contradicting results about the benefits of using cavity insulation. A new composite wall panel was recently proposed to improve the fire resistance rating of LSF walls, where an insulation layer was used externally between the plasterboards on both sides of the wall frame instead of using it in the cavity. In this research 11 full scale tests were conducted on conventional load bearing steel stud walls with and without cavity insulation, and the new composite panel system to study their thermal and structural performance under standard fire conditions. These tests showed that the use of cavity insulation led to inferior fire performance of walls, and provided supporting research data. They demonstrated that the use of insulation externally in a composite panel enhanced the thermal and structural performance of LSF walls and increased their fire resistance rating. This paper presents the details of the LSF wall tests and the thermal and structural performance data and fire resistance rating of load-bearing wall assemblies lined with varying plasterboard-insulation configurations under two different load ratios. Fire test results including the time–temperature and deflection profiles are presented along with the failure times and modes.