910 resultados para Finite elements analysis
Resumo:
This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimize heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed with basis on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.
Resumo:
A finite element analysis of laminated shells reinforced with laminated stiffeners is described in this paper. A rectangular laminated anisotropic shallow thin shell finite element of 48 d.o.f. is used in conjunction with a laminated anisotropic curved beam and shell stiffening finite element having 16 d.o.f. Compatibility between the shell and the stiffener is maintained all along their junction line. Some problems of symmetrically stiff ened isotropic plates and shells have been solved to evaluate the performance of the present method. Behaviour of an eccentrically stiffened laminated cantilever cylindrical shell has been predicted to show the ability of the present program. General shells amenable to rectangular meshes can also be solved in a similar manner.
Resumo:
This paper presents a formulation of an approximate spectral element for uniform and tapered rotating Euler-Bernoulli beams. The formulation takes into account the varying centrifugal force, mass and bending stiffness. The dynamic stiffness matrix is constructed using the weak form of the governing differential equation in the frequency domain, where two different interpolating functions for the transverse displacement are used for the element formulation. Both free vibration and wave propagation analysis is performed using the formulated elements. The studies show that the formulated element predicts results, that compare well with the solution available in the literature, at a fraction of the computational effort. In addition, for wave propagation analysis, the element shows superior convergence. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The ultimate bearing capacity of a number of multiple strip footings, identically spaced and equally loaded to failure at the same time,is computed by using the lower bound limit analysis in combination with finite elements. The efficiency factor due to the component of soil unit weight, is computed with respect to changes in the clear spacing (xi(gamma)) between the footings. It is noted that the failure load for a footing in the group becomes always greater than that of a single isolated footing. The values of xi(gamma) for the smooth footings are found to be always lower than the rough footings. The values ofxi(gamma) are found to increase continuously with a decrease in the spacing between footings. As compared to the available theoretical and experimental results reported in literature, the present analysis provides generally a little lower values of xi(gamma). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, elastic wave propagation is studied in a nanocomposite reinforced with multiwall carbon nanotubes (CNTs). Analysis is performed on a representative volume element of square cross section. The frequency content of the exciting signal is at the terahertz level. Here, the composite is modeled as a higher order shear deformable beam using layerwise theory, to account for partial shear stress transfer between the CNTs and the matrix. The walls of the multiwall CNTs are considered to be connected throughout their length by distributed springs, whose stiffness is governed by the van der Waals force acting between the walls of nanotubes. The analyses in both the frequency and time domains are done using the wavelet-based spectral finite element method (WSFEM). The method uses the Daubechies wavelet basis approximation in time to reduce the governing PDE to a set of ODEs. These transformed ODEs are solved using a finite element (FE) technique by deriving an exact interpolating function in the transformed domain to obtain the exact dynamic stiffness matrix. Numerical analyses are performed to study the spectrum and dispersion relations for different matrix materials and also for different beam models. The effects of partial shear stress transfer between CNTs and matrix on the frequency response function (FRF) and the time response due to broadband impulse loading are investigated for different matrix materials. The simultaneous existence of four coupled propagating modes in a double-walled CNT-composite is also captured using modulated sinusoidal excitation.
Resumo:
By using the lower bound limit analysis in conjunction with finite elements and linear programming, the bearing capacity factors due to cohesion, surcharge and unit weight, respectively, have been computed for a circular footing with different values of phi. The recent axisymmetric formulation proposed by the authors under phi = 0 condition, which is based on the concept that the magnitude of the hoop stress (sigma(theta)) remains closer to the least compressive normal stress (sigma(3)), is extended for a general c-phi soil. The computational results are found to compare quite well with the available numerical results from literature. It is expected that the study will be useful for solving various axisymmetric geotechnical stability problems. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
A new postcracking formulation for concrete, along with both implicit and explicit layering procedures, is used in the analysis of reinforced-concrete (RC) flexural and torsional elements. The postcracking formulation accounts for tension stiffening in concrete along the rebar directions, compression softening in cracked concrete based on either stresses or strains, and aggregate interlock based on crack-confining normal stresses. Transverse shear stresses computed using the layering procedures are included in material model considerations that permit the development of inclined cracks through the RC cross section. Examples of a beam analyzed by both the layering techniques, a torsional element, and a column-slab connection region analyzed by the implicit layering procedure are presented here. The study highlights the primary advantages and disadvantages of each layering approach, identifying the class of problems where the application of either procedure is more suitable.
Resumo:
A rigorous lower bound solution, with the usage of the finite elements limit analysis, has been obtained for finding the ultimate bearing capacity of two interfering strip footings placed on a sandy medium. Smooth as well as rough footingsoil interfaces are considered in the analysis. The failure load for an interfering footing becomes always greater than that for a single isolated footing. The effect of the interference on the failure load (i) for rough footings becomes greater than that for smooth footings, (ii) increases with an increase in phi, and (iii) becomes almost negligible beyond S/B>3. Compared with various theoretical and experimental results reported in literature, the present analysis generally provides the lowest magnitude of the collapse load. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
The horizontal pullout capacity of vertical anchors embedded in sand has been determined by using an upper bound theorem of the limit analysis in combination with finite elements. The numerical results are presented in nondimensional form to determine the pullout resistance for various combinations of embedment ratio of the anchor (H/B), internal friction angle (ϕ) of sand, and the anchor-soil interface friction angle (δ). The pullout resistance increases with increases in the values of embedment ratio, friction angle of sand and anchor-soil interface friction angle. As compared to earlier reported solutions in literature, the present solution provides a better upper bound on the ultimate collapse load.
Resumo:
This paper presents a simple technique for reducing the computational effort while solving any geotechnical stability problem by using the upper bound finite element limit analysis and linear optimization. In the proposed method, the problem domain is discretized into a number of different regions in which a particular order (number of sides) of the polygon is chosen to linearize the Mohr-Coulomb yield criterion. A greater order of the polygon needs to be selected only in that region wherein the rate of the plastic strains becomes higher. The computational effort required to solve the problem with this implementation reduces considerably. By using the proposed method, the bearing capacity has been computed for smooth and rough strip footings and the results are found to be quite satisfactory.
Resumo:
A numerical formulation has been proposed for solving an axisymmetric stability problem in geomechanics with upper bound limit analysis, finite elements, and linear optimization. The Drucker-Prager yield criterion is linearized by simulating a sphere with a circumscribed truncated icosahedron. The analysis considers only the velocities and plastic multiplier rates, not the stresses, as the basic unknowns. The formulation is simple to implement, and it has been employed for finding the collapse loads of a circular footing placed over the surface of a cohesive-frictional material. The formulation can be used to solve any general axisymmetric geomechanics stability problem.
Resumo:
Composite laminates are prone to delamination. Implementation of delamination in the Carrera Unified Formulation frame work using nine noded quadrilateral MITC9 element is discussed in this article. MITC9 element is devoid of shear locking and membrane locking. Delaminated as well as healthy structure is analyzed for free mode vibration. The results from the present work are compared with the available experimental or/and research article or/and the three dimensional finite element simulations. The effect of different kinds and different percentages of area of delamination on the first three natural frequencies of the structure is discussed. The presence of open-mode delamination mode shape for large delaminations within the first three natural frequencies is discussed. Also, the switching of places between the second bending mode, with that of the first torsional mode frequency is discussed. Results obtained from different ordered theories are compared in the presence of delamination. Advantage of layerwise theories as compared to equivalent single layer theories for very large delaminations is stated. The effect of different kinds of delamination and their effect on the second bending and first torsional mode shape is discussed. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The occurrence of spurious solutions is a well-known limitation of the standard nodal finite element method when applied to electromagnetic problems. The two commonly used remedies that are used to address this problem are (i) The addition of a penalty term with the penalty factor based on the local dielectric constant, and which reduces to a Helmholtz form on homogeneous domains (regularized formulation); (ii) A formulation based on a vector and a scalar potential. Both these strategies have some shortcomings. The penalty method does not completely get rid of the spurious modes, and both methods are incapable of predicting singular eigenvalues in non-convex domains. Some non-zero spurious eigenvalues are also predicted by these methods on non-convex domains. In this work, we develop mixed finite element formulations which predict the eigenfrequencies (including their multiplicities) accurately, even for nonconvex domains. The main feature of the proposed mixed finite element formulation is that no ad-hoc terms are added to the formulation as in the penalty formulation, and the improvement is achieved purely by an appropriate choice of finite element spaces for the different variables. We show that the formulation works even for inhomogeneous domains where `double noding' is used to enforce the appropriate continuity requirements at an interface. For two-dimensional problems, the shape of the domain can be arbitrary, while for the three-dimensional ones, with our current formulation, only regular domains (which can be nonconvex) can be modeled. Since eigenfrequencies are modeled accurately, these elements also yield accurate results for driven problems. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Bearing capacity factors, N-c, N-q, and N-gamma, for a conical footing are determined by using the lower and upper bound axisymmetric formulation of the limit analysis in combination with finite elements and optimization. These factors are obtained in a bound form for a wide range of the values of cone apex angle (beta) and phi with delta = 0, 0.5 phi, and phi. The bearing capacity factors for a perfectly rough (delta = phi) conical footing generally increase with a decrease in beta. On the contrary, for delta = 0 degrees, the factors N-c and N-q reduce gradually with a decrease in beta. For delta = 0 degrees, the factor N-gamma for phi >= 35 degrees becomes a minimum for beta approximate to 90 degrees. For delta = 0 degrees, N-gamma for phi <= 30 degrees, as in the case of delta = phi, generally reduces with an increase in beta. The failure and nodal velocity patterns are also examined. The results compare well with different numerical solutions and centrifuge tests' data available from the literature.