457 resultados para Filtratge de Kalman
Resumo:
Aquesta tesi tracta el problema del posicionament de robots mòbils quan, en el decurs del moviment, es realitzen mesures angulars relatives al robot de l'orientació de la recta entre un dels seus punts i punts de l'entorn de posició coneguda. Es considera que les mesures angulars són fetes per un sensor làser giratori que detecta diferents reflectors catadiòptrics fixos. La contribució principal és el desenvolupament d'un algorisme dinàmic, basat en un filtre de Kalman estès (EKF), que estima a cada instant de temps l'estat format pels angles associats als reflectors. La simulació hodomètrica dels angles entre mesures directes del sensor làser garanteix l'ús consistent i continuat dels mètodes de triangulació per a determinar la posició i l'orientació del robot. Inclou simulacions informàtiques i experiments per a validar la precisió del mètode de posicionament proposat. En l'experimentació s'utilitza un robot mòbil omnidireccional amb tres rodes de lliscament direccional de corrons esfèrics.
Resumo:
Els sistemes híbrids de navegació integren mesures de posició i velocitat provinents de satèl·lits (GPS) i d’unitats de mesura inercials (IMU).Les dades d’aquests sensors s’han de fusionar i suavitzar, i per a aquest propòsit existeixen diversos algorismes de filtratge, que tracten les dades conjuntament o per separat. En aquest treball s’han codificat en Matlab els algorismes dels filtres de Kalman i IMM, i s’han comparat les seves prestacions en diverses trajectòries d’un vehicle. S’han avaluat quantitativament els errors dels dos filtres, i s’han sintonitzat els seus paràmetres per a minimitzar aquests errors. Amb una correcta sintonia dels filtres, s’ha comprovat que el filtre IMM és superior al filtre de Kalman, tant per maniobres brusques com per maniobres suaus, malgrat que la complexitat i el temps de càlcul requerit són majors.
Resumo:
This paper studies semistability of the recursive Kalman filter in the context of linear time-varying (LTV), possibly nondetectable systems with incorrect noise information. Semistability is a key property, as it ensures that the actual estimation error does not diverge exponentially. We explore structural properties of the filter to obtain a necessary and sufficient condition for the filter to be semistable. The condition does not involve limiting gains nor the solution of Riccati equations, as they can be difficult to obtain numerically and may not exist. We also compare semistability with the notions of stability and stability w.r.t. the initial error covariance, and we show that semistability in a sense makes no distinction between persistent and nonpersistent incorrect noise models, as opposed to stability. In the linear time invariant scenario we obtain algebraic, easy to test conditions for semistability and stability, which complement results available in the context of detectable systems. Illustrative examples are included.
Resumo:
The goal of this paper is to study and propose a new technique for noise reduction used during the reconstruction of speech signals, particularly for biomedical applications. The proposed method is based on Kalman filtering in the time domain combined with spectral subtraction. Comparison with discrete Kalman filter in the frequency domain shows better performance of the proposed technique. The performance is evaluated by using the segmental signal-to-noise ratio and the Itakura-Saito`s distance. Results have shown that Kalman`s filter in time combined with spectral subtraction is more robust and efficient, improving the Itakura-Saito`s distance by up to four times. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The recent developments on Hidden Markov Models (HMM) based speech synthesis showed that this is a promising technology fully capable of competing with other established techniques. However some issues still lack a solution. Several authors report an over-smoothing phenomenon on both time and frequencies which decreases naturalness and sometimes intelligibility. In this work we present a new vowel intelligibility enhancement algorithm that uses a discrete Kalman filter (DKF) for tracking frame based parameters. The inter-frame correlations are modelled by an autoregressive structure which provides an underlying time frame dependency and can improve time-frequency resolution. The system’s performance has been evaluated using objective and subjective tests and the proposed methodology has led to improved results.
Resumo:
The continued increase in availability of economic data in recent years and, more importantly, the possibility to construct larger frequency time series, have fostered the use (and development) of statistical and econometric techniques to treat them more accurately. This paper presents an exposition of structural time series models by which a time series can be decomposed as the sum of a trend, seasonal and irregular components. In addition to a detailled analysis of univariate speci fications we also address the SUTSE multivariate case and the issue of cointegration. Finally, the recursive estimation and smoothing by means of the Kalman filter algorithm is described taking into account its different stages, from initialisation to parameter s estimation.
Resumo:
Els sistemes automatitzats que requereixen d’un control d’estabilitat o moviment es poden trobar cada cop en més àmbits. Aplicacions UAV o de posicionament global són les més comunes per aquest tipus de sistemes, degut a que necessiten d’un control de moviment molt precís. Per a dur a terme aquest procés s’utilitzen unitats de mesura inercial, que mitjançant acceleròmetres i giroscopis degudament posicionats, a més a més d’una correcció del possible error que puguin introduir aquests últims, proporcionen una acceleració i una velocitat angular de les quals es pot extreure el camí efectuat per aquestes unitats. La IMU, combinada amb un GPS i mitjançant un filtre de Kalman, proporcionen una major exactitud , a més d’un punt de partida (proporcionat per el GPS), un recorregut representable en un mapa y, en el cas de perdre la senyal GPS, poder seguir adquirint dades de la IMU. Aquestes dades poden ser recollides i processades per una FPGA, que a la vegada podem sincronitzar amb una PDA per a que l’usuari pugui veure representat el moviment del sistema. Aquest treball es centra en el funcionament de la IMU i l’adquisició de dades amb la FPGA. També introdueix el filtre de Kalman per a la correcció de l’error dels sensors.
Resumo:
Filtratge web utilitzant les eines de Microsoft ISA Server 2004, llur implementació, configuració i parametrització, en un escenari de treballdomèstic o de petita empresa.
Resumo:
L'objectiu del treball és realitzar un programari que realitzi tasques de filtratge de les planes web que pot explorar qualsevol explorador del sistema. A més, ha d'incloure la capacitat de mantenir un historial de navegació, que pot servir per millorar la tasca de filtratge.
Resumo:
This note describes how the Kalman filter can be modified to allow for thevector of observables to be a function of lagged variables without increasing the dimensionof the state vector in the filter. This is useful in applications where it is desirable to keepthe dimension of the state vector low. The modified filter and accompanying code (whichnests the standard filter) can be used to compute (i) the steady state Kalman filter (ii) thelog likelihood of a parameterized state space model conditional on a history of observables(iii) a smoothed estimate of latent state variables and (iv) a draw from the distribution oflatent states conditional on a history of observables.
Resumo:
El déficit existente a nuestro país con respecto a la disponibilidad de indicadores cuantitativos con los que llevar a término un análisis coyuntural de la actividad industrial regional ha abierto un debate centrado en el estudio de cuál es la metodología más adecuada para elaborar indicadores de estas características. Dentro de este marco, en este trabajo se presentan las principales conclusiones obtenidas en anteriores estudios (Clar, et. al., 1997a, 1997b y 1998) sobre la idoneidad de extender las metodologías que actualmente se están aplicando a las regiones españolas para elaborar indicadores de la actividad industrial mediante métodos indirectos. Estas conclusiones llevan a plantear una estrategia distinta a las que actualmente se vienen aplicando. En concreto, se propone (siguiendo a Israilevich y Kuttner, 1993) un modelo de variables latentes para estimar el indicador de la producción industrial regional. Este tipo de modelo puede especificarse en términos de un modelo statespace y estimarse mediante el filtro de Kalman. Para validar la metodología propuesta se estiman unos indicadores de acuerdo con ella para tres de las cuatro regiones españolas que disponen d¿un Índice de Producción Industrial (IPI) elaborado mediante el método directo (Andalucía, Asturias y el País Vasco) y se comparan con los IPIs publicados (oficiales). Los resultados obtenidos muestran el buen comportamiento de l¿estrategia propuesta, abriendo así una línea de trabajo con la que subsanar el déficit al que se hacía referencia anteriormente
Resumo:
El déficit existente a nuestro país con respecto a la disponibilidad de indicadores cuantitativos con los que llevar a término un análisis coyuntural de la actividad industrial regional ha abierto un debate centrado en el estudio de cuál es la metodología más adecuada para elaborar indicadores de estas características. Dentro de este marco, en este trabajo se presentan las principales conclusiones obtenidas en anteriores estudios (Clar, et. al., 1997a, 1997b y 1998) sobre la idoneidad de extender las metodologías que actualmente se están aplicando a las regiones españolas para elaborar indicadores de la actividad industrial mediante métodos indirectos. Estas conclusiones llevan a plantear una estrategia distinta a las que actualmente se vienen aplicando. En concreto, se propone (siguiendo a Israilevich y Kuttner, 1993) un modelo de variables latentes para estimar el indicador de la producción industrial regional. Este tipo de modelo puede especificarse en términos de un modelo statespace y estimarse mediante el filtro de Kalman. Para validar la metodología propuesta se estiman unos indicadores de acuerdo con ella para tres de las cuatro regiones españolas que disponen d¿un Índice de Producción Industrial (IPI) elaborado mediante el método directo (Andalucía, Asturias y el País Vasco) y se comparan con los IPIs publicados (oficiales). Los resultados obtenidos muestran el buen comportamiento de l¿estrategia propuesta, abriendo así una línea de trabajo con la que subsanar el déficit al que se hacía referencia anteriormente
Resumo:
Addresses the problem of estimating the motion of an autonomous underwater vehicle (AUV), while it constructs a visual map ("mosaic" image) of the ocean floor. The vehicle is equipped with a down-looking camera which is used to compute its motion with respect to the seafloor. As the mosaic increases in size, a systematic bias is introduced in the alignment of the images which form the mosaic. Therefore, this accumulative error produces a drift in the estimation of the position of the vehicle. When the arbitrary trajectory of the AUV crosses over itself, it is possible to reduce this propagation of image alignment errors within the mosaic. A Kalman filter with augmented state is proposed to optimally estimate both the visual map and the vehicle position
Resumo:
The Extended Kalman Filter (EKF) and four dimensional assimilation variational method (4D-VAR) are both advanced data assimilation methods. The EKF is impractical in large scale problems and 4D-VAR needs much effort in building the adjoint model. In this work we have formulated a data assimilation method that will tackle the above difficulties. The method will be later called the Variational Ensemble Kalman Filter (VEnKF). The method has been tested with the Lorenz95 model. Data has been simulated from the solution of the Lorenz95 equation with normally distributed noise. Two experiments have been conducted, first with full observations and the other one with partial observations. In each experiment we assimilate data with three-hour and six-hour time windows. Different ensemble sizes have been tested to examine the method. There is no strong difference between the results shown by the two time windows in either experiment. Experiment I gave similar results for all ensemble sizes tested while in experiment II, higher ensembles produce better results. In experiment I, a small ensemble size was enough to produce nice results while in experiment II the size had to be larger. Computational speed is not as good as we would want. The use of the Limited memory BFGS method instead of the current BFGS method might improve this. The method has proven succesful. Even if, it is unable to match the quality of analyses of EKF, it attains significant skill in forecasts ensuing from the analysis it has produced. It has two advantages over EKF; VEnKF does not require an adjoint model and it can be easily parallelized.