972 resultados para Filtering Techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is part of a research under construction since 2000, in which the main objective is to measure small dynamic displacements by using L1 GPS receivers. A very sensible way to detect millimetric periodic displacements is based on the Phase Residual Method (PRM). This method is based on the frequency domain analysis of the phase residuals resulted from the L1 double difference static data processing of two satellites in almost orthogonal elevation angle. In this article, it is proposed to obtain the phase residuals directly from the raw phase observable collected in a short baseline during a limited time span, in lieu of obtaining the residual data file from regular GPS processing programs which not always allow the choice of the aimed satellites. In order to improve the ability to detect millimetric oscillations, two filtering techniques are introduced. One is auto-correlation which reduces the phase noise with random time behavior. The other is the running mean to separate low frequency from the high frequency phase sources. Two trials have been carried out to verify the proposed method and filtering techniques. One simulates a 2.5 millimeter vertical antenna displacement and the second uses the GPS data collected during a bridge load test. The results have shown a good consistency to detect millimetric oscillations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a novel framework for automatic segmentation of primary tumors and its boundary from brain MRIs using morphological filtering techniques. This method uses T2 weighted and T1 FLAIR images. This approach is very simple, more accurate and less time consuming than existing methods. This method is tested by fifty patients of different tumor types, shapes, image intensities, sizes and produced better results. The results were validated with ground truth images by the radiologist. Segmentation of the tumor and boundary detection is important because it can be used for surgical planning, treatment planning, textural analysis, 3-Dimensional modeling and volumetric analysis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last few years a state-space formulation has been introduced into self-tuning control. This has not only allowed for a wider choice of possible control actions, but has also provided an insight into the theory underlying—and hidden by—that used in the polynomial description. This paper considers many of the self-tuning algorithms, both state-space and polynomial, presently in use, and by starting from first principles develops the observers which are, effectively, used in each case. At any specific time instant the state estimator can be regarded as taking one of two forms. In the first case the most recently available output measurement is excluded, and here an optimal and conditionally stable observer is obtained. In the second case the present output signal is included, and here it is shown that although the observer is once again conditionally stable, it is no longer optimal. This result is of significance, as many of the popular self-tuning controllers lie in the second, rather than first, category.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O aumento do número de recursos digitais disponíveis dificulta a tarefa de pesquisa dos recursos mais relevantes, no sentido de se obter o que é mais relevante. Assim sendo, um novo tipo de ferramentas, capaz de recomendar os recursos mais apropriados às necessidades do utilizador, torna-se cada vez mais necessário. O objetivo deste trabalho de I&D é o de implementar um módulo de recomendação inteligente para plataformas de e-learning. As recomendações baseiam-se, por um lado, no perfil do utilizador durante o processo de formação e, por outro lado, nos pedidos efetuados pelo utilizador, através de pesquisas [Tavares, Faria e Martins, 2012]. O e-learning 3.0 é um projeto QREN desenvolvido por um conjunto de organizações e tem com objetivo principal implementar uma plataforma de e-learning. Este trabalho encontra-se inserido no projeto e-learning 3.0 e consiste no desenvolvimento de um módulo de recomendação inteligente (MRI). O MRI utiliza diferentes técnicas de recomendação já aplicadas noutros sistemas de recomendação. Estas técnicas são utilizadas para criar um sistema de recomendação híbrido direcionado para a plataforma de e-learning. Para representar a informação relevante, sobre cada utilizador, foi construído um modelo de utilizador. Toda a informação necessária para efetuar a recomendação será representada no modelo do utilizador, sendo este modelo atualizado sempre que necessário. Os dados existentes no modelo de utilizador serão utilizados para personalizar as recomendações produzidas. As recomendações estão divididas em dois tipos, a formal e a não formal. Na recomendação formal o objetivo é fazer sugestões relacionadas a um curso específico. Na recomendação não-formal, o objetivo é fazer sugestões mais abrangentes onde as recomendações não estão associadas a nenhum curso. O sistema proposto é capaz de sugerir recursos de aprendizagem, com base no perfil do utilizador, através da combinação de técnicas de similaridade de palavras, um algoritmo de clustering e técnicas de filtragem [Tavares, Faria e Martins, 2012].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper extents the by now classic sensor fusion complementary filter (CF) design, involving two sensors, to the case where three sensors that provide measurements in different bands are available. This paper shows that the use of classical CF techniques to tackle a generic three sensors fusion problem, based solely on their frequency domain characteristics, leads to a minimal realization, stable, sub-optimal solution, denoted as Complementary Filters3 (CF3). Then, a new approach for the estimation problem at hand is used, based on optimal linear Kalman filtering techniques. Moreover, the solution is shown to preserve the complementary property, i.e. the sum of the three transfer functions of the respective sensors add up to one, both in continuous and discrete time domains. This new class of filters are denoted as Complementary Kalman Filters3 (CKF3). The attitude estimation of a mobile robot is addressed, based on data from a rate gyroscope, a digital compass, and odometry. The experimental results obtained are reported.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

13th International Conference on Autonomous Robot Systems (Robotica), 2013, Lisboa

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Learning object repositories are a basic piece of virtual learning environments used for content management. Nevertheless, learning objects have special characteristics that make traditional solutions for content management ine ective. In particular, browsing and searching for learning objects cannot be based on the typical authoritative meta-data used for describing content, such as author, title or publicationdate, among others. We propose to build a social layer on top of a learning object repository, providing nal users with additional services fordescribing, rating and curating learning objects from a teaching perspective. All these interactions among users, services and resources can be captured and further analyzed, so both browsing and searching can be personalized according to user pro le and the educational context, helping users to nd the most valuable resources for their learning process. In this paper we propose to use reputation schemes and collaborative filtering techniques for improving the user interface of a DSpace based learning object repository.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, an advanced technique for the generation of deformation maps using synthetic aperture radar (SAR) data is presented. The algorithm estimates the linear and nonlinear components of the displacement, the error of the digital elevation model (DEM) used to cancel the topographic terms, and the atmospheric artifacts from a reduced set of low spatial resolution interferograms. The pixel candidates are selected from those presenting a good coherence level in the whole set of interferograms and the resulting nonuniform mesh tessellated with the Delauney triangulation to establish connections among them. The linear component of movement and DEM error are estimated adjusting a linear model to the data only on the connections. Later on, this information, once unwrapped to retrieve the absolute values, is used to calculate the nonlinear component of movement and atmospheric artifacts with alternate filtering techniques in both the temporal and spatial domains. The method presents high flexibility with respect to the required number of images and the baselines length. However, better results are obtained with large datasets of short baseline interferograms. The technique has been tested with European Remote Sensing SAR data from an area of Catalonia (Spain) and validated with on-field precise leveling measurements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tässädiplomityössä selvitettiin taajuusmuuttajan synnyttämien yhteismuotoisten häiriöiden syntyä, ominaisuuksia, kulkureittejä sekä erilaisia tekniikoita toteuttaa yhteismuotosuodatus taajuusmuuttajan lähdössä. Työssä suunniteltiin ja mitoitettiin yhteismuotosuodatin, josta valmistettiin prototyyppi. Suodatinta testattiin laboratoriossa ja mittauksissa käytettiin erilaisia suodattimen kapasitanssin arvoja ja neutraalin pisteen kytkennän variaatioita. Mittauksilla selvitettiin suodattimen kyky suodattaa myös yhteismuotoisten jännitteiden lisäksi eromuotoista jännitettä, akselijännitettä ja vaihevirtaa. Mittaustulosten perusteella voitiin todeta suunnitellun suodattimen parantavan merkittävästi taajuusmuuttajalta moottorille syötettävän sähkön laatua ja loiventavan ennen kaikkea yhteismuotoisen jännitepulssin nousureunaa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tutkat muodostavat Suomen rauhanajan ilmavalvonnan rungon. Ilmatilassa on lentokoneiden lisäksi paljon muitakin kohteita, jotka ilmavalvontatutka havaitsee. Naita ei toivottuja kaikuja kutsutaan välkkeeksi. Sadevälke on tilavuusvälkettä. Tämän työn tarkoituksena on löytää menetelmä tai malli, jolla voitaisiin mallintaa sadevälkkeen vaikutus ilmavalvontatutkassa. Toisaalta myös sadevälkkeen suodatus on työn keskeinen tavoite. Käytettyjä suodatusmenetelmiä olivat adaptiivinen suodatus ja doppler-suodatus. Suodinpankkiin eli doppler-suodatukseen lisättiin vielä CFAR Työn tuloksena voi todeta, että sadevälkkeen suodatus onnistui hyvin mutta itse sadevälkkeen mallintamista tulee kehittää edelleen. Työssä käytetyt menetelmät on esitetty algoritmimuodossa. Mittausaineiston keräys suoritettiin keskivalvontatutkalla ja SP-testerillä. Varsinaiset suodatuskokeet ja mallin testaus tehtiin Matlab-ohjelmistolla.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The two main objectives of Bayesian inference are to estimate parameters and states. In this thesis, we are interested in how this can be done in the framework of state-space models when there is a complete or partial lack of knowledge of the initial state of a continuous nonlinear dynamical system. In literature, similar problems have been referred to as diffuse initialization problems. This is achieved first by extending the previously developed diffuse initialization Kalman filtering techniques for discrete systems to continuous systems. The second objective is to estimate parameters using MCMC methods with a likelihood function obtained from the diffuse filtering. These methods are tried on the data collected from the 1995 Ebola outbreak in Kikwit, DRC in order to estimate the parameters of the system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents an efficient method for volume rendering of glioma tumors from segmented 2D MRI Datasets with user interactive control, by replacing manual segmentation required in the state of art methods. The most common primary brain tumors are gliomas, evolving from the cerebral supportive cells. For clinical follow-up, the evaluation of the pre- operative tumor volume is essential. Tumor portions were automatically segmented from 2D MR images using morphological filtering techniques. These seg- mented tumor slices were propagated and modeled with the software package. The 3D modeled tumor consists of gray level values of the original image with exact tumor boundary. Axial slices of FLAIR and T2 weighted images were used for extracting tumors. Volumetric assessment of tumor volume with manual segmentation of its outlines is a time-consuming proc- ess and is prone to error. These defects are overcome in this method. Authors verified the performance of our method on several sets of MRI scans. The 3D modeling was also done using segmented 2D slices with the help of a medical software package called 3D DOCTOR for verification purposes. The results were validated with the ground truth models by the Radi- ologist.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The accuracy of a 3D reconstruction using laser scanners is significantly determined by the detection of the laser stripe. Since the energy pattern of such a stripe corresponds to a Gaussian profile, it makes sense to detect the point of maximum light intensity (or peak) by computing the zero-crossing point of the first derivative of such Gaussian profile. However, because noise is present in every physical process, such as electronic image formation, it is not sensitive to perform the derivative of the image of the stripe in almost any situation, unless a previous filtering stage is done. Considering that stripe scanning is an inherently row-parallel process, every row of a given image must be processed independently in order to compute its corresponding peak position in the row. This paper reports on the use of digital filtering techniques in order to cope with the scanning of different surfaces with different optical properties and different noise levels, leading to the proposal of a more accurate numerical peak detector, even at very low signal-to-noise ratios

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structure of turbulent flow over large roughness consisting of regular arrays of cubical obstacles is investigated numerically under constant pressure gradient conditions. Results are analysed in terms of first- and second-order statistics, by visualization of instantaneous flow fields and by conditional averaging. The accuracy of the simulations is established by detailed comparisons of first- and second-order statistics with wind-tunnel measurements. Coherent structures in the log region are investigated. Structure angles are computed from two-point correlations, and quadrant analysis is performed to determine the relative importance of Q2 and Q4 events (ejections and sweeps) as a function of height above the roughness. Flow visualization shows the existence of low-momentum regions (LMRs) as well as vortical structures throughout the log layer. Filtering techniques are used to reveal instantaneous examples of the association of the vortices with the LMRs, and linear stochastic estimation and conditional averaging are employed to deduce their statistical properties. The conditional averaging results reveal the presence of LMRs and regions of Q2 and Q4 events that appear to be associated with hairpin-like vortices, but a quantitative correspondence between the sizes of the vortices and those of the LMRs is difficult to establish; a simple estimate of the ratio of the vortex width to the LMR width gives a value that is several times larger than the corresponding ratio over smooth walls. The shape and inclination of the vortices and their spatial organization are compared to recent findings over smooth walls. Characteristic length scales are shown to scale linearly with height in the log region. Whilst there are striking qualitative similarities with smooth walls, there are also important differences in detail regarding: (i) structure angles and sizes and their dependence on distance from the rough surface; (ii) the flow structure close to the roughness; (iii) the roles of inflows into and outflows from cavities within the roughness; (iv) larger vortices on the rough wall compared to the smooth wall; (v) the effect of the different generation mechanism at the wall in setting the scales of structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High spatial resolution environmental data gives us a better understanding of the environmental factors affecting plant distributions at fine spatial scales. However, large environmental datasets dramatically increase compute times and output species model size stimulating the need for an alternative computing solution. Cluster computing offers such a solution, by allowing both multiple plant species Environmental Niche Models (ENMs) and individual tiles of high spatial resolution models to be computed concurrently on the same compute cluster. We apply our methodology to a case study of 4,209 species of Mediterranean flora (around 17% of species believed present in the biome). We demonstrate a 16 times speed-up of ENM computation time when 16 CPUs were used on the compute cluster. Our custom Java ‘Merge’ and ‘Downsize’ programs reduce ENM output files sizes by 94%. The median 0.98 test AUC score of species ENMs is aided by various species occurrence data filtering techniques. Finally, by calculating the percentage change of individual grid cell values, we map the projected percentages of plant species vulnerable to climate change in the Mediterranean region between 1950–2000 and 2020.