Combining sparse and dense methods in 6D Visual Odometry


Autoria(s): Silva, Hugo Miguel; Silva, Eduardo; Bernardino, Alexandre
Data(s)

29/12/2015

29/12/2015

2013

Resumo

13th International Conference on Autonomous Robot Systems (Robotica), 2013, Lisboa

Visual Odometry is one of the most powerful, yet challenging, means of estimating robot ego-motion. By grounding perception to the static features in the environment, vision is able, in principle, to prevent the estimation bias rather common in other sensory modalities such as inertial measurement units or wheel odometers. We present a novel approach to ego-motion estimation of a mobile robot by using a 6D Visual Odometry Probabilistic Approach. Our approach exploits the complementarity of dense optical flow methods and sparse feature based methods to achieve 6D estimation of vehicle motion. A dense probabilistic method is used to robustly estimate the epipolar geometry between two consecutive stereo pairs; a sparse feature stereo approach to estimate feature depth; and an Absolute Orientation method like the Procrustes to estimate the global scale factor. We tested our proposed method on a known dataset and compared our 6D Visual Odometry Probabilistic Approach without filtering techniques against a implementation that uses the well known 5-point RANSAC algorithm. Moreover, comparison with an Inertial Measurement Unit (RTK-GPS) is also performed, for providing a more detailed evaluation of the method against ground-truth information.

Identificador

978-1-4799-1246-9

http://hdl.handle.net/10400.22/7290

10.1109/Robotica.2013.6623527

Idioma(s)

eng

Publicador

IEEE

Relação

Robótica;2013

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6623527&abstractAccess=no&userType=inst

Direitos

closedAccess

Palavras-Chave #5-point RANSAC algorithm #6D visual odometry probabilistic approach #Procrustes method #Absolute orientation method #Dense method #Dense optical flow methods
Tipo

article